LONG ANSWER QUESTIONS (4 MARKS):
11.If tan A + sin A = m and tanA - sin A = n ,show that ma- n2 = 4 mn
Answers
Answered by
33
Correct Question
If tan A + sin A = m and tanA - sin A = n ,show that m²- n² = 4√mn
Answer :
Given :
- m = tan(A) + sin(A)
- n = tan(A) - sin(A)
To Prove
m² - n² = 4√mn
LHS
m² - n²
➠ (m + n)(m - n)
➠ [(tan A + sin A) + (tan A - sin A)][(tanA + sin A) - (tan A - sin A)]
➠ (2tan A)(2 sin A)
➠ 4tan A.sin A______________(1)
RHS
4√mn
➠ 4√(tan A + sin A)(tan A - sin A)
➠ 4√(tan²A - sin²A)
➠ 4√(sin²A/cos²A - sin²A)
➠ 4 × {√(sin²A - sin²Acos²A)/cos²A }
➠ 4 × {√[sin²A(1 - cos²A)]/cos²A }
➠ 4 × √tan²A.sin²A
➠ 4tan A.sin A__________(2)
From equations (1) and (2),
m² - n² = 4√mn
Answered by
50
If tan A + sin A = m and tan A - sin A = n , then show that m² - n² = 4√mn
⠀
⠀⠀⠀⠀
✩ Subtracting eq. ( II) from eq. ( I) :
⠀
Similar questions