look at teh attachement aND ANSWER THE QUESTIONS
Attachments:
lalipapa123:
should we prove them
Answers
Answered by
2
all the following you just have to substitute sin x/ cos x = tan x
cos x / sin x = cot x . . and other basic formulas of trigonometric rations. that is all.
==================
======================
(sinA+ cosA)(cosA/sinA + sinA/cosA)
= cosA + sin²A / cosA + cos²A / sinA + sinA
= [Cos²A + sin²A] / cos A + [ cos²A + sin²A ] / sin A
= 1 / cos A + 1/sin A => sec + cosec A
================
sec⁴A - sec²A = sec²A (sec²A - 1) = sec²A tan²A = (1+tan²A) tan²A
= tan²A+ tan⁴A
====================
cot⁴A + cot²A = cot²A (cot²A + 1) = cot²A cosec²A
=(cosec²A - 1) cosec²A = cosec⁴ A - cosec²A
==========
√cosec²A - 1 = √cot²A = cotA = cos A / sin A = cos A cosec A
-------------------------------
sec²A cosec²A = (1+tan²A)(1+cot²A)
= 1 + tan²A + cot²A + tan² A cot²A = answer
===============
tan² - sin² = sin² / cos² - sin² = sin² [ 1/cos² - 1 ]
= sin² (1 - cos² ) / cos²
= sin² A sin² A sec²A
=======
cos x / sin x = cot x . . and other basic formulas of trigonometric rations. that is all.
==================
======================
(sinA+ cosA)(cosA/sinA + sinA/cosA)
= cosA + sin²A / cosA + cos²A / sinA + sinA
= [Cos²A + sin²A] / cos A + [ cos²A + sin²A ] / sin A
= 1 / cos A + 1/sin A => sec + cosec A
================
sec⁴A - sec²A = sec²A (sec²A - 1) = sec²A tan²A = (1+tan²A) tan²A
= tan²A+ tan⁴A
====================
cot⁴A + cot²A = cot²A (cot²A + 1) = cot²A cosec²A
=(cosec²A - 1) cosec²A = cosec⁴ A - cosec²A
==========
√cosec²A - 1 = √cot²A = cotA = cos A / sin A = cos A cosec A
-------------------------------
sec²A cosec²A = (1+tan²A)(1+cot²A)
= 1 + tan²A + cot²A + tan² A cot²A = answer
===============
tan² - sin² = sin² / cos² - sin² = sin² [ 1/cos² - 1 ]
= sin² (1 - cos² ) / cos²
= sin² A sin² A sec²A
=======
Similar questions