मान लीजिए कि A = {1, 2, 3}, B = {4, 5, 6, 7} तथा f = { (1, 4), (2, 5), (3, 6) } A से B तक एक फलन है। सिद्ध कीजिए कि f एकैकी है।
Answers
Answer:
दिया है, A ={1, 2, 3}, B = {4, 5, 6, 7} f : A → B इस प्रकार है कि f = { (1, 4 ), ( 2, 5 ), ( 3, 6 ) } A के प्रत्येक अवयव का अलग-अलग प्रतिबिम्ब है। इसलिए f एकैकी हैl
Given : A = {1, 2, 3}, B = {4, 5, 6, 7} तथा f = { (1, 4), (2, 5), (3, 6) } A से B तक एक फलन है।
To find : सिद्ध कीजिए कि फलन एकैकी है
Solution :
एकैकी (one-one) अथवा एकैक (injective) फलन यदि प्रत्येक x₁ , x₂ ∈ X के लिए f(x₁) = f(x₂) का तात्पर्य है की x₁ = x₂
अनयथा फलन एक बहुएक (many - one) कहलाता है
आच्छादक (onto ) अथवा आच्छादी (surjective) फलन यदि प्रत्येक y ∈ Y के लिए
X में एक ऐसे अवयव का अस्तित्व है की f(x) = y
एकैकी तथा आच्छादक (one-one and onto ) => एकैकी आच्छादी ( bijective) -(injective and surjective)
A = {1, 2, 3},
B = {4, 5, 6, 7}
f = { (1, 4), (2, 5), (3, 6) }
x f(x)
1 4
2 5
3 6
प्रत्येक x₁ , x₂ ∈ X के लिए f(x₁) = f(x₂) का तात्पर्य है की x₁ = x₂
=> f एकैकी है।
इतिसिद्धम
f = { (1, 4), (2, 5), (3, 6) } एकैकी है
और सीखें :
निम्नलिखित फलनों की एकैक (Injective) तथा आच्छादी (Surjective) गुणों की जाँच
https://brainly.in/question/16549721
सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में R = { (a, b) : a ≤ b²}, द्वारा परिभाषित सम्बन्ध R, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।
brainly.in/question/16549217
फलन R⟶R, न तो एकैकी है और न आच्छादक है,
https://brainly.in/question/16550005
f(x) = (1/x) द्वारा परिभाषित फलन R. → R. एकैकी तथा आच्छादक है,
https://brainly.in/question/16549723