Math, asked by Pramodsannad, 1 month ago

make a list of all the formulae used in chapter 8 comparing quantities​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

1. Profit and Loss

\red{ \boxed{ \sf{ \:Profit = SP - CP}}}

\red{ \boxed{ \sf{ \:Profit\% =  \frac{Profit}{CP} \times 100\%}}}

\red{ \boxed{ \sf{ \:SP =  \frac{(100 + Profit\%) \times CP}{100}}}}

\red{ \boxed{ \sf{ \:CP =  \frac{100 \times SP}{100 + Profit\%}}}}

\red{ \boxed{ \sf{ \:Loss = CP - SP}}}

\red{ \boxed{ \sf{ \:Loss\% =  \frac{Loss}{CP} \times 100\%}}}

\red{ \boxed{ \sf{ \:SP =  \frac{(100  - Loss\%) \times CP}{100}}}}

\red{ \boxed{ \sf{ \:CP =  \frac{100 \times SP}{100 - Loss\%}}}}

2. Marked Price and Discount

\red{ \boxed{ \sf{ \:SP = MP - Discount}}}

\red{ \boxed{ \sf{ \:Discount\% =  \frac{Discount}{MP} \times 100\%}}}

\red{ \boxed{ \sf{ \:SP =  \frac{(100 - Discount\%) \times MP}{100}}}}

\red{ \boxed{ \sf{ \:MP =  \frac{100 \times SP}{100 - Discount\%}}}}

3. Sale Tax

\red{ \boxed{ \sf{ \:SP = LP + Sale \: tax}}}

\red{ \boxed{ \sf{ \:Sale \: tax \: \% = \dfrac{Sale \: tax \:}{LP}  \times 100\%}}}

4. VAT

\red{ \boxed{ \sf{ \:SP = LP + VAT}}}

\red{ \boxed{ \sf{ \:VAT \: \% = \dfrac{VAT \:}{LP}  \times 100\%}}}

5. Compound interest

Amount on a certain sum of Rs p invested at the rate of r % per annum compounded annually for n years is

\red{ \boxed{ \sf{ \:Amount = p {\bigg[1 + \dfrac{r}{100} \bigg]}^{n}}}}

Amount on a certain sum of Rs p invested at the rate of r % per annum compounded semi - annually for n years is

\red{ \boxed{ \sf{ \:Amount = p {\bigg[1 + \dfrac{r}{200} \bigg]}^{2n}}}}

Amount on a certain sum of Rs p invested at the rate of r % per annum compounded quarterly for n years is

\red{ \boxed{ \sf{ \:Amount = p {\bigg[1 + \dfrac{r}{400} \bigg]}^{4n}}}}

And

Compound interest on a certain sum of Rs p invested at the rate of r % per annum compounded annually for n years is

\red{ \boxed{ \sf{ \:CI = p {\bigg[1 + \dfrac{r}{100} \bigg]}^{n} - p}}}

Compound interest on a certain sum of Rs p invested at the rate of r % per annum compounded semi - annually for n years is

\red{ \boxed{ \sf{ \:CI = p {\bigg[1 + \dfrac{r}{200} \bigg]}^{2n} - p}}}

Compound interest on a certain sum of Rs p invested at the rate of r % per annum compounded quarterly for n years is

\red{ \boxed{ \sf{ \:CI = p {\bigg[1 + \dfrac{r}{400} \bigg]}^{4n} - p}}}

Value on a certain sum of Rs p depreciated at the rate of r % per annum compounded annually for n years is

\red{ \boxed{ \sf{ \: Value = p {\bigg[1  - \dfrac{r}{100} \bigg]}^{n}}}}

Answered by madhav5245
2

Step-by-step explanation:

Topics are

1. SP and CP

2. Sale Tax

3. Vat

4. Compound Interest

5. Depreciation

Similar questions