Math, asked by nirbhu, 1 year ago

Matrix method. ..2x-3y=-1 3x+5y=5​

Answers

Answered by erinna
23

Answer:

x=\frac{10}{19}, y=\frac{13}{19}

Step-by-step explanation:

The given system of equations is

2x-3y=-1

3x+5y=5

We need to solve these equations by matrix method.

Rewrite the equations in matrix form.

\begin{bmatrix}2&-3\\ \:3&5\end{bmatrix}\begin{bmatrix}x\\ \:y\end{bmatrix}=\begin{bmatrix}-1\\ \:5\end{bmatrix}

A=\begin{bmatrix}2&-3\\ \:3&5\end{bmatrix}

X=\begin{bmatrix}x\\ \:y\end{bmatrix}

B=\begin{bmatrix}-1\\ \:5\end{bmatrix}

AX=B

A^{-1}AX=A^{-1}B

X=A^{-1}B                .... (1)

Now first find the inverse of matrix A.

|A|=2\cdot \:5-\left(-3\right)\cdot \:3

If M=\begin{bmatrix}a\:&\:b\:\\ c\:&\:d\:\end{bmatrix}, then

adjM=\begin{bmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{bmatrix}

adjA=\begin{bmatrix}5&-\left(-3\right)\\ -3&2\end{bmatrix}

A^{-1}=\frac{1}{|A|}adjA

A^{-1}=\frac{1}{19}\begin{bmatrix}5&-\left(-3\right)\\ -3&2\end{bmatrix}=\begin{bmatrix}\frac{5}{19}&\frac{3}{19}\\ -\frac{3}{19}&\frac{2}{19}\end{bmatrix}

Using equation (1), we get

X=\begin{bmatrix}\frac{5}{19}&\frac{3}{19}\\ -\frac{3}{19}&\frac{2}{19}\end{bmatrix}\begin{bmatrix}-1\\ \:5\end{bmatrix}

\begin{bmatrix}x\\ \:y\end{bmatrix}=\begin{bmatrix}\frac{5}{19}\left(-1\right)+\frac{3}{19}\cdot \:5\\ \left(-\frac{3}{19}\right)\left(-1\right)+\frac{2}{19}\cdot \:5\end{bmatrix}

\begin{bmatrix}x\\ \:y\end{bmatrix}=\begin{bmatrix}\frac{10}{19}\\ \frac{13}{19}\end{bmatrix}

On comparing both sides we get

x=\frac{10}{19}, y=\frac{13}{19}

Therefore, x=\frac{10}{19}, y=\frac{13}{19}.

Answered by rohitkumar9162chanaw
0

Answer:

Matrix method. ..2x-3y=-1 3x+5y=5

Similar questions