Math, asked by Adhiraj00000, 6 months ago

/ Modulus of (√7-3i)^3

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ modulus \: of \: ( \sqrt{7} - 3i) {}^{3}   \\  \\ so \: we \: know \: that \\ (a  -  b) {}^{3}  = a {}^{3}  - b {}^{3}  - 3a {}^{2} b + 3ab {}^{2}  \\  \\ thus \: then \: accordingly \\  \\ ( \sqrt{7}  - 3i) {}^{3}  = ( \sqrt{7} ) {}^{3}  + (3i) {}^{3}  + 3 \times  \sqrt{7}  \times i {}^{2}  - 3 \times ( \sqrt{7} ) {}^{2}  \times i \\  \\  = 7 \sqrt{7}  + 27i {}^{3}  + 3 \sqrt{7}  \times ( - 1) - (3 \times 7i) \\  \\  = 7 \sqrt{7}  +   27( - i) - 3 \sqrt{7}  - 21i \\  \\  = 4 \sqrt{7}  - 27i - 21i \\  \\  = 4 \sqrt{7}  - 48i \\  \\ comparing \: it \: with \: a + ib \:  \: and \: equating \\ real \: and \: imaginary \: parts \\  \\ we \: get \\ a = 4 \sqrt{7}  \\ b =  - 48

now \: we \: know \: that \\  \\  |z|  =  \sqrt{a {}^{2} + b {}^{2}  }  \\  \\  =  \sqrt{(4 \sqrt{7} ) {}^{2}  + ( - 48) {}^{2} }  \\  \\  =  \sqrt{112 + 2304}  \\  \\  =  \sqrt{2416}  \\  \\  =  \sqrt{16 \times 151}  \\  \\  |z|  = 4 \sqrt{151}

Similar questions