Physics, asked by shreyamenon4284, 1 year ago

Monochromatic light of wavelength 589 nm is incident from here on water surface is known for water is 1.33 find the wavelength frequency and speed of the refractive light 2th

Answers

Answered by Myotis
0

let,

Wavelength of incident monochromatic light,

λ = 589 n m = 589 × 10−9 m

Speed of light in air, c = 3 × 108 m/s

Refractive index of water, μ = 1.33

(a) The ray will reflect back in the same medium as that of incident ray. Hence, the wavelength, speed, and frequency of the reflected ray will be the same as that of the incident ray.

Frequency of light is given by the relation,

v = c / λ

  = 3 x 108 / 589 x 10-9

  = 5 .09 x 1014 Hz

Hence, the speed, frequency, and wavelength of the reflected light are 3 × 108 m/s, 5.09 ×1014 Hz, and 589 n m respectively.

(b) Frequency of light does not depend on the property of the medium in which it is travelling. Hence, the frequency of the refracted ray in water will be equal to the frequency of the incident or reflected light in air.

So Refracted frequency, ν = 5.09 ×1014 Hz

Speed of light in water is related to the refractive index of water as:

v = c / μ

v =  3 x 108 / 1.33 = 2.26 x 108 m/s  

 

Wavelength of light in water is given by the relation,

λ = v / v

v =  2.26 x 108 / 5 .09 x 1014 = 444.007 x 10-9 m

  = 444.01 nm

Hence, the speed, frequency, and wavelength of refracted light are 2.26 ×108 m/s, 444 .01 nm, and 5.09 × 1014 Hz respectively.

Similar questions