Most of the chemical reactions takes place faster at higher temperatures. Why?
Answers
Answered by
1
Many chemical reactions, and almost all biochemical reactions do not occur spontaneously and must have an initial input of energy (called the activation energy) to get started. Activation energy must be considered when analyzing both endergonic and exergonic reactions. Exergonic reactions have a net release of energy, but they still require a small amount of energy input before they can proceed with their energy-releasing steps. This small amount of energy input necessary for all chemical reactions to occur is called the activation energy (or free energy of activation) and is abbreviated EA.

Activation energy: Activation energy is the energy required for a reaction to proceed; it is lower if the reaction is catalyzed. The horizontal axis of this diagram describes the sequence of events in time.
Activation Energy in Chemical Reactions
Why would an energy-releasing, negative ∆G reaction actually require some energy to proceed? The reason lies in the steps that take place during a chemical reaction. During chemical reactions, certain chemical bonds are broken and new ones are formed. For example, when a glucose molecule is broken down, bonds between the carbon atoms of the molecule are broken. Since these are energy-storing bonds, they release energy when broken. However, to get them into a state that allows the bonds to break, the molecule must be somewhat contorted. A small energy input is required to achieve this contorted state, which is called the transition state: it is a high-energy, unstable state. For this reason, reactant molecules don’t last long in their transition state, but very quickly proceed to the next steps of the chemical reaction.
Cells will at times couple an exergonic reaction (ΔG<0)(ΔG<0) with endergonic reactions (ΔG>0)(ΔG>0), allowing them to proceed. This spontaneous shift from one reaction to another is called energy coupling. The free energy released from the exergonic reaction is absorbed by the endergonic reaction. One example of energy coupling using ATP involves a transmembrane ion pump that is extremely important for cellular function.
plz mark me as brainlist

Activation energy: Activation energy is the energy required for a reaction to proceed; it is lower if the reaction is catalyzed. The horizontal axis of this diagram describes the sequence of events in time.
Activation Energy in Chemical Reactions
Why would an energy-releasing, negative ∆G reaction actually require some energy to proceed? The reason lies in the steps that take place during a chemical reaction. During chemical reactions, certain chemical bonds are broken and new ones are formed. For example, when a glucose molecule is broken down, bonds between the carbon atoms of the molecule are broken. Since these are energy-storing bonds, they release energy when broken. However, to get them into a state that allows the bonds to break, the molecule must be somewhat contorted. A small energy input is required to achieve this contorted state, which is called the transition state: it is a high-energy, unstable state. For this reason, reactant molecules don’t last long in their transition state, but very quickly proceed to the next steps of the chemical reaction.
Cells will at times couple an exergonic reaction (ΔG<0)(ΔG<0) with endergonic reactions (ΔG>0)(ΔG>0), allowing them to proceed. This spontaneous shift from one reaction to another is called energy coupling. The free energy released from the exergonic reaction is absorbed by the endergonic reaction. One example of energy coupling using ATP involves a transmembrane ion pump that is extremely important for cellular function.
plz mark me as brainlist
krushnal21:
thank you
Similar questions