Math, asked by sauravmaurya50p11sg9, 1 year ago

multiplicative inverse of (i+1)(i+2)/(i-1)(i-2)

Answers

Answered by Santafg
24
(i+1)(i+2)/(i-1)(i-2)
=(i^2+2i+i+2)/(i^2-2i-i+2)
=(-1+3i+2)/(-1-3i+2)
=(1+3i)/(1-3i)
=(1+3√-1)/(1-3√-1)
Answered by payalchatterje
5

Answer:

Required multiplicative inverse is -\frac{5}{13} (3i + 2)

Step-by-step explanation:

Given,

 \frac{(i + 1)(i + 2)}{(i - 1)(i - 2)}

Here numerator is (i + 1)(i + 2)

and denominator is (i  -  1)(i  -  2)

First we are multiplying numerator and denominator by (i+1),

 \frac{(i + 1)(i + 2)(i + 1)}{(i - 1)(i - 2)(i + 1)}  \\  =  \frac{ {(i + 1)}^{2}(i + 2) }{(i - 2)( {i}^{2} -  {1}^{2}  )}  \\  =  \frac{( {i}^{2} + 2i + 1)(i + 2) }{(i - 2)( - 1 - 1)} \\  =  {\frac{( - 1 + 2i + 1)(i  + 2)}{ - 2(i - 2)} }  \\  =  \frac{2i(i  + 2)}{ - 2(i - 2)}  \\  =  - i \frac{(i + 2)}{(i - 2)}

We are multiplying denominator and numerator by (i+2),

 =  - i \frac{(i + 2)(i + 2)}{(i + 2)(i  -  2)} \\  =  - i \frac{ {(i + 2)}^{2} }{ {i}^{2} -  {2}^{2}  }   \\  =  - i \frac{ {i}^{2} + 2i +  {2}^{2}  }{ - 1 - 4}  \\  =  - i \frac{ - 1 + 2i + 4}{ - 5} \\   = i \frac{3 + 2i}{5}   \\ =  \frac{3i + 2 {i}^{2} }{5}

 =  \frac{3i - 2}{5}

Therefore

 \frac{(i + 1)(i + 2)}{(i - 1)(i - 2)}  =  \frac{3i - 2}{5}

Multiplicative inverse of

 \frac{(i + 1)(i + 2)}{(i - 1)(i - 2)}

= multiplicative inverse of  \frac{3i - 2}{5}

is  \frac{5}{3i - 2}

or,

 \frac{5 \times ( - 3i - 2)}{(  3i - 2)( - 3i - 2)}  \\  =  + \frac{5(3i + 2)}{ {( 3i)}^{2}  -  {2}^{2} }  \\  =   \frac{5(3i + 2)}{ - 9 - 4}  \\  =  -\frac{5}{13} (3i + 2)

Here applied formulas are

 {i}^{2}  =  - 1 \\ {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}  \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

Similar questions
Math, 1 year ago