निम्नलिखित को सिद्ध कीजिए:
Answers
Answered by
5
Prove that : Cos 4x = 1 - 8 Sin²x.Cos²x
From RHS ;
↪1 - 8 Sin²x.Cos²x
↪1 - 2 ( 2Sinx.Cosx )²
↪1 - 2 (Sin2x)² [ •°• Sin 2x = 2Sin x . Cos x ]
↪1 - 2 Sin²2x
↪Cos 4x [ •°• Cos 2x = 1 - 2 Sin²x ] , or [ Cos 4x = 1 - 2 Sin²2x]
⬆Note : Here, We have replaced x = 2x ] ⬆
Trigonometric Function Formula Used !
↪ Sin 2x = 2Sin x . Cos x
↪ Cos 2x = 1 - 2 Sin²x
↪ Cos 4x = 1 - 2 Sin²2x
From RHS ;
↪1 - 8 Sin²x.Cos²x
↪1 - 2 ( 2Sinx.Cosx )²
↪1 - 2 (Sin2x)² [ •°• Sin 2x = 2Sin x . Cos x ]
↪1 - 2 Sin²2x
↪Cos 4x [ •°• Cos 2x = 1 - 2 Sin²x ] , or [ Cos 4x = 1 - 2 Sin²2x]
⬆Note : Here, We have replaced x = 2x ] ⬆
Trigonometric Function Formula Used !
↪ Sin 2x = 2Sin x . Cos x
↪ Cos 2x = 1 - 2 Sin²x
↪ Cos 4x = 1 - 2 Sin²2x
Answered by
3
Step-by-step Proof :
Given,
L. H. S
=cos4 x
= 1 - 2 sin²2x
= 1 - 2 ( sin2x)²
= 1 - 2 ( 2sinx. cosx)²
= 1 - 2 ( 4 sin²x . cos²x)
= 1 - 8 sin²x cos²x
= RHS
We used the Trigonometry ratios of multiples,
1) sin2p = 2sinp. cosp
2) cos2p = 1 - 2sin²p = 2cos²p - 1
हम सिद्ध किया की
Given,
L. H. S
=cos4 x
= 1 - 2 sin²2x
= 1 - 2 ( sin2x)²
= 1 - 2 ( 2sinx. cosx)²
= 1 - 2 ( 4 sin²x . cos²x)
= 1 - 8 sin²x cos²x
= RHS
We used the Trigonometry ratios of multiples,
1) sin2p = 2sinp. cosp
2) cos2p = 1 - 2sin²p = 2cos²p - 1
हम सिद्ध किया की
Similar questions