Math, asked by PragyaTbia, 1 year ago

निम्नलिखित को सिद्ध कीजिए: \cot x\,\cot 2x - \cot 2x\,\cot 3x - \cot 3x\,\cot x = 1

Answers

Answered by Anonymous
0

hope this answer helpful u

Attachments:
Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

\cot x\,\cot 2x - \cot 2x\,\cot 3x - \cot 3x\,\cot x = 1

L.H.S.  =   \cot x\,\cot 2x - \cot 2x\,\cot 3x - \cot 3x\,\cot x

          =  \frac{1}{tanx}.\frac{1}{tan2x}  - \frac{1}{tan2x}. \frac{1}{tan3x} - \frac{1}{3x}. \frac{1}{tanx}

         =  \frac{(tan3x-tanx) - tan2x}{tanx.tan2x.tan3x}

         =  \frac{tan(3x-x)[1+tan3x tanx] -tan2x}{tanx.tan2x.tan3x}

क्योंकि  tan( A - B ) =  \frac{tanA-tanB}{1+tanA tanB}

          tanA - tanB = tan(A-B) (1+tanAtanB)

       =    \frac{tan2x+tanxtan2xtan3x - tan2x}{tanx.tan2x.tan3x}

      =  \frac{tanx.tan2x.tan3x}{tanx.tan2x.tan3x}

      =   1  = R.H.S.

Similar questions