Math, asked by PragyaTbia, 1 year ago

निम्नलिखित को सिद्ध कीजिए: \dfrac {\cos 4x + \cos 3x + \cos 2x}{ \sin 4x + \sin 3x + \sin 2x} = \cot 3x

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

\frac{cos4x+cos3x+cos2x}{sin4x+sin3x+sin2x}= cot3x

L.H.S.  = \frac{cos4x+cos3x+cos2x}{sin4x+sin3x+sin2x}

          = \frac{(cos4x+cos2x)+cos3x}{(sin4x+sin2x)+sin3x}

∵cosC + cosD = 2cos\frac{C+D}{2} cos\frac{C-D}{2}

∵sinC + sinD = 2sin\frac{C+D}{2} cos\frac{C-D}{2}

अतः  L.H.S.  =  \frac{(cos4x+cos2x)+cos3x}{(sin4x+sin2x)+sin3x}

                 =    \frac{2cos\frac{4x+2x}{2} cos\frac{4x-2x}{2}+cos3x}{2sin\frac{4x+2x}{2} cos\frac{4x-2x}{2}+sin3x}

                =  \frac{2cos\frac{6x}{2} cos\frac{2x}{2}+cos3x}{2sin\frac{6x}{2} cos\frac{2x}{2}+sin3x}

               =   \frac{2cos3x cosx+cos3x}{2sin3xcosx+sin3x}

              =  \frac{cos3x (2cosx+1)}{sin3x(2cosx+1)}

               =  \frac{cos3x}{sin3x}  = R.H.S.

Similar questions