Math, asked by PragyaTbia, 11 months ago

निम्नलिखित को सिद्ध कीजिए: \cos \left(\dfrac{3\pi}{2}+x\right) cos (2x+x) \left[ \cot \left(\dfrac {3\pi}{2}-x\right) + \cot (2x+x)\right] = 1

Answers

Answered by hukam0685
0
निम्नलिखित को सिद्ध कीजिए: \cos \left(\dfrac{3\pi}{2}+x\right) cos (2\pi+x) \left[ \cot \left(\dfrac {3\pi}{2}-x\right) + \cot (2\pi+x)\right] = 1

हम जानते हैं कि,

\cos \left(\dfrac{3\pi}{2}+x\right) = sin \: x \\ \\cos (2\pi+x)=cos\:x\\\\\\
\cot \left(\dfrac {3\pi}{2}-x\right) = tan \: x \\ \\sin (2\pi+x)=sin\:x\\\\
sin \: x \: cos \: x \:[ tanx \: + cot \: x] \\ \\ = > sin \: x \: cos \: x \bigg[\frac{sin \: x}{cos \: x} + \frac{cos \: x}{sin \: x}\bigg] \\\\

 = > sin \: x \: cos \: x\bigg( \frac{ {sin}^{2}x + {cos}^{2} x }{sin \: x \: cos \: x} \bigg) \\ \\ = > sin \: x \: cos \: x\bigg( \frac{1}{sin \: x \: cos \:x} \bigg) \\ \\ = > 1 \\ \\ = RHS\\
Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

सिद्ध करना है -

\cos \left(\dfrac{3\pi}{2}+x\right) cos (2\pi+x) \left[ \cot \left(\dfrac {3\pi}{2}-x\right) + \cot (2\pi+x)\right] = 1

L.H.S.  = \cos \left(\dfrac{3\pi}{2}+x\right) cos (2\pi+x) \left[ \cot \left(\dfrac {3\pi}{2}-x\right) + \cot (2\pi+x)\right]

∵         \cos \left(\dfrac{3\pi}{2}+x\right) = sin \: x \\ \\cos (2\pi+x)=cos\:x\\\\\\ \cot \left(\dfrac {3\pi}{2}-x\right) = tan \: x \\ \\cot (2\pi+x)=cot\:x\\\\

∴ L.H.S.  =  (sinx) (cosx) (tanx + cotx)

              =   sinx cosx [ \frac{sinx}{cosx} + \frac{cosx}{sinx} ]

             =  sinx cosx  [\frac{sin^{2}x+cos^{2}x}{sinx cosx} ]

             =   sinx cosx \frac{1}{sinx cosx}      

                                                                  [ ∵  sin^{2}x+cos^{2}x = 1]

             =   1  = R.H.S.

अतः   L.H.S.  = R.H.S.

Similar questions