Math, asked by PragyaTbia, 1 year ago

निम्नलिखित को सिद्ध कीजिए: \dfrac {\cos\,(\pi + x)\, \cos (-x)}{\sin\,(\pi - x)\, \cos \left(\dfrac{\pi}{2} + x}\right)

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

सिद्ध करना है -

\frac{cos(\pi +x) cos(-x)}{sin(\pi -x)cos(\frac{\pi }{2} +x)}  = cot^{2}x

L.H.S.  

          = \frac{cos(\pi +x) cos(-x)}{sin(\pi -x)cos(\frac{\pi }{2} +x)}

हम जानते है कि  

cos(π+x)  = -cosx   ,  cos(-x)  =  cosx

तथा   sin(π-x)  =  sinx  ,  cos(\frac{\pi }{2} +x)

∴ L.H.S.  =  \frac{cos(\pi +x) cos(-x)}{sin(\pi -x)cos(\frac{\pi }{2} +x)}

              =  \frac{(-cosx)cosx}{sinx(-sinx)}

              =  \frac{-cos^{2}x}{-sin^{2}x}

              =  cot^{2}x

              =  R.H.S.

अतः   L.H.S.  =  R.H.S.

Similar questions