Math, asked by prajapathhitesh435, 1 month ago

Ni + COSO
VI - COSO
cose co t coto
 \sqrt{1 + cos \:  \infty }   \div  \sqrt{1 -  \cos \infty  = } cosec +  \cot  slove this sum

Answers

Answered by VanikaSinghania
3

Answer:

The proof is as follows-

To prove- √(1+cosA)/√(1-cosA)=cosecA + cot A

Proof-

LHS-

√(1+cosA)/√(1-cosA)

Multiplying with √(1+cosA) on both numerator and denominator, we have,

={√(1+cosA)*√(1+cosA)}/{√(1-cosA)*√(1+cosA)}

=[√{(1+cosA)*(1+cosA)}]/[√{(1-cosA)*(1+cosA)}]

={√(1+cosA)²}/{√(1²-cos²A)}

=(1+cosA)/√(sin²A)

=(1+cosA)/sinA

=(1/sinA)+(cosA/sinA)

=cosecA + cotA

Hence proved…

Similar questions