Math, asked by Anonymous, 20 hours ago

Nonsense/No solution = report

Attachments:

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given cubic polynomial is

\rm \:  {4x}^{3} -  {7x}^{2} - 14x - 3

Let assume that

\rm \: f(x) =  {4x}^{3} -  {7x}^{2} - 14x - 3

First we have to find the zero of f(x) by using hit and trial method.

So, Let assume that x = - 1

\rm \: f( - 1) =  {4( - 1)}^{3} -  {7( - 1)}^{2} - 14( - 1) - 3

\rm \: f( - 1) =   - 4 - 7 + 14 - 3

\rm\implies \:f( - 1) = 0

We know,

Factor theorem states that if a polynomial f(x) of degree more than 1 is such that f(- a) = 0, then x + a is factor of f(x).

So, By factor theorem,

\rm\implies \:x + 1 \: is \: a \: factor \: of \: f(x)

Now, By using Method of Synthetic Division, we have

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{{\sf{\:\: \:\:}}}\\ {\underline{\sf{ - 1}}}& {\sf{\: 4 \: \: \: \: \:  - 7 \: \: \: \: \: - 14 \: \: \: \: - 3 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  - 4 \:  \:  \:  \:  \:  \: \: \: \: \: 11\:  \:  \:  \:  \: 3\:  \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \: 4 \:  \:  \:  \:   - 11\:  \:  \:  - 3  \:  \:  \:  [ \: 0\: \: \:  \:  \:  \:   \:\:}} \\ {\sf{\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\ \end{gathered}

Now, By using Division Algorithm, we have

Dividend = Divisor × Quotient + Remainder

So,

\rm \:  {4x}^{3} -  {7x}^{2} - 14x - 3

\rm \:  =  \: (x + 1)( {4x}^{2} - 11x - 3)

\rm \:  =  \: (x + 1)( {4x}^{2} - 12x + x - 3)

\rm \:  =  \: (x + 1)\bigg[4x(x - 3) + 1(x - 3)\bigg]

\rm \:  =  \: (x + 1)\bigg[4x(x - 3) + 1(x - 3)\bigg]

\rm \:  =  \: (x + 1)(x - 3)(4x + 1)

Hence,

\boxed{\tt{ \rm \:  {4x}^{3} -  {7x}^{2} - 14x - 3 = (x + 1)(x - 3)(4x + 1)}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions