Chemistry, asked by zeeshan14, 1 year ago

Nucleophilic substitution reaction SN 1

Answers

Answered by Ak1435
0
The SN1 reaction is a substitution reaction in organic chemistry. "SN" stands for nucleophilic substitution and the "1" represents the fact that the rate-determining step is unimolecular. Thus, the rate equation is often shown as having first-order dependence on electrophile and zero-order dependence on nucleophile.

zeeshan14: give a reaction
Answered by RakeshPateL555
0
<b>____________♦♦♥♦♦____________

\huge\mathfrak\purple{\:\:\:\:\:\:\:\:hello\:\:\:mate}

<b>____________♦♦♥♦♦____________
\tt{\pink{\huge{here\:is\:your\:answer}}}
<b>____________♦♦♥♦♦____________

\mathbb{\red{\huge{\:\:\:\:\:SN\:2}}}


( for mechanism of sn2 see attached file 1)

♦♦♦• Reaction is:

Stereospecific (Walden Inversion of configuration)

Concerted - all bonds form and break at same time

Bimolecular - rate depends on concentration of both nucleophile and substrate

♦♦♦• Substrate:

Best if primary (one substituent on carbon bearing leaving group)

works if secondary, fails if tertiary

♦♦♦• Nucleophile:

Best if more reactive (i.e. more anionic or more basic)

♦♦♦• Leaving Group: Best if more stable (i.e. can support negative charge well):

TsO- (very good) > I- > Br- > Cl- > F- (poor)

RF , ROH , ROR , RNH2


♦♦♦• Solvent:

Polar Aprotic (i.e. no OH) is best.

For example dimethylsulfoxide ( CH3 ( HCON(CH3)2 ), acetonitrile ( CH3

Protic solvents (e.g. H2 but can be used in some case are NEVER Substrates for SN2 reactions

Leaving Groups on double-bonded carbons are never replaced by SN2 reactions SOCH3 ), dimethylformamide CN ). O or ROH) deactivate nucleophile by hydrogen bonding


\mathbb{\red{\huge{\:\:\:\:\:SN\:1}}}


( for mechanism of sn1 see attached file 2)

♦♦♦• Reaction is:

Non-stereospecific (attack by nucleophile occurs from both sides)

Non-concerted - has carbocation intermediate

Unimolecular - rate depends on concentration of only the substrate

♦♦♦• Substrate:

Best if tertiary or conjugated (benzylic or allylic) carbocation can be formed as leaving group departs

never primary


♦♦♦• Nucleophile:

Best if more reactive (i.e. more anionic or more basic)

♦♦♦• Leaving Group: Same as SN2

best if more stable (i.e. can support negative charge well)

Examples: TsO- (very good) > I- > Br- > Cl- > F- (poor)

However, tertiary or allylic ROH or ROR' can be reactive under strongly acidic conditions to replace OH or OR

♦♦♦• Solvent:

Same as SN2

Polar Aprotic (i.e. no OH) is best

Examples: dimethylsulfoxide ( CH3 ( HCON(CH3)2 ), acetonitrile ( CH3

Protic solvents (e.g. H2
SOCH3 ), dimethylformamide CN ).
O or ROH) deactivate but can be used in some cases

<b>____________♦♦☺♦♦____________

\sf\purple{By-\:\:\:RAKESH\:\:PATEL}

\mathbb{\red{\huge{\:\:\:\:\:THANK\: YOU}}}
<b>________▶▶▶⭐⭐⭐◀◀◀________
Attachments:
Similar questions