‘O’ is any point inside a rectangle ABCD. Prove that OB² + OD² = OA² + OC²
Answers
Answered by
69
Answer:
OB² + OD² = OA² + OC²
Step-by-step explanation:
Lets draw ⊥ on AB & CD such that it divides AB into a & b two parts
& its height are x & y
OB² = x² + b²
OD² = y² + a²
OB² + OD² = x² + b² + y² + a²
=> OB² + OD² = x² + y² + a² + b²
OA² = x² + a²
OC² = y² + b²
OA² + OC² = x² + a² + y² + b²
=> OA² + OC² = x² + y² + a² + b²
=> OB² + OD² = OA² + OC²
Similar questions