Math, asked by shaikhArshin, 1 year ago


Obtain all the zeroes of the polynomial 3x4 – 12x3+ 5x2 + 16x - 12, if two of its zeroes are -2/√3 and 2/√3
.
( that x4and x3 are powers) ​

Answers

Answered by hukam0685
28

Step-by-step explanation:

If

 -  \frac{2}{ \sqrt{3} } and \:  \frac{2}{ \sqrt{3} } \\ \:

are the zeros of polynomial,then

\Big(x +  \frac{2}{ \sqrt{3} } \Big)\Big(x -  \frac{2}{ \sqrt{3} }\Big ) \\  \\

are the factors of that polynomial,so

apply \: identity \\  \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\ \Big(x +  \frac{2}{ \sqrt{3} } \Big)\Big(x -  \frac{2}{ \sqrt{3} } \Big)  =  {x}^{2} -  \frac{4}{3}  \\ \\ or \\  \\ 3 {x}^{2}  - 4 = 0 \\  \\ is \: polynomial \: that \: is \: factor \: of \\  \\

3 {x}^{4}  - 12 {x}^{3}  +5x^2+16x-12

Now divide this by the factor polynomial

3 {x}^{2}  - 4 \: )3 {x}^{4}  - 12 {x}^{3}  +5x^2+16x-12( {x}^{2}  - 4x + 3\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \: 3 {x}^{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   - 4 {x}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 12 {x}^{3 }  + 9 {x}^{2} + 16x  \\  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  - 12 {x}^{3}  \:  \:   \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: 16x \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: ( - ) \\ \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   -  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 9 {x}^{2}  - 12 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 9 {x}^{2}  - 12 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( - ) \:  \:  \:  \: ( + ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \\  \\

Now the quotient polynomial is

{x}^{2}  - 4x + 3 \\  \\ find \: roots \: of \: it \\  \\ {x}^{2}  - 4x + 3 = 0 \\  \\  {x}^{2}  - 3x - x + 3 = 0 \\  \\ x(x - 3) - 1(x - 3) = 0 \\  \\ (x - 1)(x - 3) = 0 \\  \\ x = 1 \\  \\ x = 3 \\  \\

So, all the roots of polynomial are

 \frac{ - 2}{ \sqrt{3} } , \:  \frac{2}{ \sqrt{3} }, 1, \: 3 \\  \\

Hope it helps you.

Answered by kidsjoyplayschool95
1

Answer:2/√3,-2/√3,3,1

Step-by-step explanation:

 The two zeroes of the given polynomial are 2/√3 and -2/√3.

 (√3x-2) and (√3x+2) are the factors of the given polynomial.

 => (√3x-2)(√3x+2) = (3x^2- 4)

Is also the factor of the given polynomial.

=> by the division method given below in the image <=

 After that factorise

 = 3x^4 - 12x^3 + 5x^2 + 16x - 12

 = (3x^2 - 4) (x^2 - 4x + 3)

 = (3x^2 - 4) [(x^2 - 3x)-(x + 3)]

 = (3x^2 - 4) [x (x - 3)-1 (x - 3)]

 = (3x^2 - 4) [(x - 3) (x - 1)]

 = (√3x-2)(√3x+2)(x - 3)(x - 1)

 Threrfore, the zeroes of the polynomial are 2/√3, -2/√3,3,1

Attachments:
Similar questions