obtain all the zerosif the polynomial x4-3x3-x2+9x-6,if two of its zeros are ^3 and -^3
Answers
Answered by
522
Since √3 and -√3 are zeros , x-√3 and x+√3 are factors of the polynomial x^4-3x³-x²+9x-6 .
(x+√3)(x-√3) = x²-(√3)² [ (a+b)(a-b)=a²-b²]
= x²- 3
Now divide the polynomial x^4-3x³-x²+9x-6 by (x²-3)
=>
x² - 3x + 2
-----------------------
x²-3 ║ x^4-3x³-x²+9x-6
x^4 -3x²
- +
--------------------------
0-3x³+2x²+9x-6
-3x³ +9x
+ -
---------------------------
0+2x²+0-6
2x² -6
- +
---------------------------
0 0
=>x^4-3x³-x²+9x-6 = (x²-3x+2)(x²- 3)
=>(x²-3x+2) = x²-2x-x+2)
=x(x-2)-1(x-2)
=(x-2)(x-1)
=>x=2,1
=>x^4-3x³-x²+9x-6 = (x-2)(x-1)(x+√3)(x-√3)
Therefore the zeros are 2,1,√3 and -√3
(x+√3)(x-√3) = x²-(√3)² [ (a+b)(a-b)=a²-b²]
= x²- 3
Now divide the polynomial x^4-3x³-x²+9x-6 by (x²-3)
=>
x² - 3x + 2
-----------------------
x²-3 ║ x^4-3x³-x²+9x-6
x^4 -3x²
- +
--------------------------
0-3x³+2x²+9x-6
-3x³ +9x
+ -
---------------------------
0+2x²+0-6
2x² -6
- +
---------------------------
0 0
=>x^4-3x³-x²+9x-6 = (x²-3x+2)(x²- 3)
=>(x²-3x+2) = x²-2x-x+2)
=x(x-2)-1(x-2)
=(x-2)(x-1)
=>x=2,1
=>x^4-3x³-x²+9x-6 = (x-2)(x-1)(x+√3)(x-√3)
Therefore the zeros are 2,1,√3 and -√3
Answered by
74
Answer:
Step-by-step explanation:
Zeroes of the polynomial given are -√3 & √3 . Therefore (x-√3) and (x+√3) are factor of p(x).
Multiply both the factors, which inturn is a factor of p(x).
After multiplying :- we get (x^2-3)
Now divide p(x) i.e (x^4-3x^3-x^2+9x-6) by (x^2-3)
After dividing p(x) by its factor i.e (x^2-3) we get qoutient as (x^2-3x+2) & remainder as 0.
Now we have to factorise the quotient by splitting the middle term method i.e
X^2-3x+2. Sum= -3
Product =2
-1 , -2
i.e (x+1)&(x+2) are factor of p(x)
i.e zeroes of the polynomial are -√3,√3,-1 and -2.
Similar questions
Accountancy,
8 months ago
Hindi,
8 months ago
Math,
8 months ago
India Languages,
1 year ago
Science,
1 year ago
Science,
1 year ago