English, asked by vinaygolechha, 1 year ago

obtain all zeroes of 3x4-15x3+13x2+25x-30

Answers

Answered by igowrishankar
2
12-45+26-750
so the answer is -757

vinaygolechha: ok
Answered by ts720148
2

Solution :

Here, f(x)=3x4−15x3+13x2+25x−30

As, 53−−√and−53−−√ are two of the zeroes of the f(x).

∴(x−53−−√)and(x+53−−√) are the factors of f(x).

⇒(x2−53) is the factor of f(x).

Now, we can write,

3x4−15x3+13x2+25x−30=3x2(x2−53)−15x(x2−53)+18(x2−53)

=(x2−53)(3x2−15x+18)  

=(3x2−5)(x2−5x+6)

=(3x2−5)(x−2)(x−3)

So, remaining zeroes of f(x) are 2 and 3.

please mark as brainliest

Similar questions