Math, asked by rishika5379, 1 year ago

On what principal will the compound interest be rs 4 more than the simple
interest for 2 years at 10 p.c.p.a.?
the answer is 400 but how pls solve my question ​

Answers

Answered by TRISHNADEVI
15

\huge{ \underline{ \overline{ \mid{ \mathfrak{ \pink{ \: \: SOLUTION \: \: } \mid}}}}}

 \underline{ \bold{ \:  \: Given : \mapsto}}  \\ \\  \text{No.  \: of  \: years, n = 2 \:  years } \\  \\  \text{Rate \:   of \:  interest, r = 10\%} \\  \\  \text{Compound  \: interest is \:  Rs. 4  \: more \:  }  \\  \text{than  \: simple \:  interest.} \\  \\  \text{So,} \\  \text{ \:  \:  \: Difference  \: between \:  compound  \: } \\  \text{interest \:  and \:  simple  \: interest = Rs. 4}

 \text{Let,} \\ \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: principal \:  \: amount \:  \: be \:  \:  P}

 \\  \text{ \underline{  \: In  \: case \:  of \:  Simple \:  Interest \:  \: }}\\  \\  \bold{S.I. = \frac{ P \times r \times n}{100} } \\  \\  \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \:= \frac{ P \times 10\times 2}{100}  } \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{2 P}{10}  }

 \\   \text{ \underline{ \:  \: In \:  case  \: of  \:  Compound \:  Interest \: \:  }} \: \\  \\  \bold{C.I. = A - P}  \\  \\ \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: = P(1  +  \frac{r}{100} )  {}^{n} - P} \\  \\  \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: = P[ \:(1 +  \frac{r}{100} ) {}^{n} - 1  ]} \\  \\ \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: = P[ \:(1 +  \frac{10}{100} ) {}^{2} - 1  ]} \\  \\ \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: = P[ \:( \frac{110}{100} ) {}^{2} - 1  ]} \\  \\ \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: = P[ \:( \frac{ \:  \: 12100 \:  \: }{10000} )  - 1  ]} \\  \\ \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: = P \times ( \frac{12100 - 10000}{10000} }) \\  \\ \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: = P \times  \frac{2100}{10000} } \\  \\ \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ \: 21 \: P \: }{100} } \\

 \underline{ \bold{ \:  \: A.T.Q. \:  \: }} \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{C.I. - S.I. = 4} \:  \:  \:  \\  \\  \bold{ \Rightarrow \:  \frac{ \: 21 \: P \: }{100}  -  \frac{2 \: P}{10} = 4 } \\   \\ \bold{  \Rightarrow \: \frac{21 \: P - 20 \: P}{100}  = 4} \\  \\  \bold{  \Rightarrow \: \frac{P}{100} = 4 } \\  \\  \bold{ \therefore \:  \:P = 400 }

 \text{The \:  principal \:  amount \:  = Rs. 400}

Similar questions