Math, asked by 2005shalinikumari, 11 months ago

one zero of the polynomial 3x^3+16x^2+15x-18 is 2/3.find the other zeros of the polynomial.(with explanation)​

Answers

Answered by ShivajiMaharaj45
3

Step-by-step explanation:

\sf 3{x}^{3} + 16{x}^{2} + 15x - 18 = 0

\\

\sf One\:of\:the\:zero\:is\: \frac {2}{3}

\\

\sf so\:( 3x - 2 )\:should\:be\:the\:factor\:of\:the\:given\:polynomial

\\

\sf So\:now\:try\:to\:create\:this\:factor

\\

\sf 3 {x}^{3} - 2{x}^{2} + 18{x}^{2} -  12x + 27x - 18 = 0

\\

\sf {x}^{2} ( 3x - 2 ) + 6x ( 3x - 2 ) + 9 ( 3x - 2 ) = 0

\\

\sf ( 3x - 2 )( {x}^{2} + 6x + 9 ) = 0

\\

\sf ( 3x - 2 )( x + 3 )( x + 3 ) = 0

\\

\sf So\:the\:other\:zero\:of\:the\:polynomial\:is\:-3

\\

#JaiBhavaniJaiShivaji

Similar questions