Math, asked by vandu14sharma, 10 months ago

P divides distance between A(-2,1) and B(1,4) in the ratio 2:1 calculate the coordinates of the point P​

Answers

Answered by mysticd
14

 Let \:P(x,y) \:divide \: AB \: internally \: in \: the \\ratio \: m : n = 2 : 1

 \underline { \pink {Using \: the \: section \: formula :}}

 P(x,y) = \Big( \frac{mx_{2}+nx_{1}}{m+n} , \frac{my_{2}+ny_{1}}{m+n}\Big)

 A(-2,1) = ( x_{1}, y_{1}) \:and \: B(1,4) = ( x_{2} , y_{2} )

 P = \Big( \frac{2\times 1 + 1\times (-2)}{2+1} , \frac{2\times 4 + 1\times 1}{2+1}\Big) \\= \Big( \frac{2-2}{3} , \frac{8+1}{3} \Big) \\= \Big( 0, \frac{9}{3}\Big) \\= ( 0, 3)

Therefore.,

 \red{ Coordinates \:of \: point \: P } \green { = ( 0,3) }

•••♪

Answered by Anonymous
7

Given that ,

  • The point P divide AB in the ratio 2 : 1

  • The two points are A(-2,1) and B(1,4)

Let , the cordinate of point P be P(x,y)

We know that , the section formula is given by

 \large \sf  \fbox{(x,y)= \bigg( \frac{mx_{2}+nx_{1}}{m+n} , \frac{my_{2}+ny_{1}}{m+n}\bigg) \: }

Thus ,

 \sf \mapsto P(x,y)= \bigg( \frac{2\times 1 + 1\times (-2)}{2+1} , \frac{2\times 4 + 1\times 1}{2+1}\bigg) \\ \\ \sf \mapsto P(x,y)= \bigg( \frac{2-2}{3} , \frac{8+1}{3} \bigg) \\ \\ \sf \mapsto P(x,y)= \bigg( 0, \frac{9}{3}\bigg) \\ \\ \sf \mapsto P(x,y)= ( 0, 3)

 \sf \therefore  \underline{The  \: coordinate  \: of \:  point  \: P \:  is \:  (0,3) \: }

Similar questions