Math, asked by PragyaTbia, 1 year ago

प्रश्न 1 से 22 तक निम्नलिखित सीमाओं के मान प्राप्त कीजिए : \lim_{x\rightarrow0}\dfrac{\sin ax}{\sin bx}, \,a, \,b \neq 0

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

\lim_{x\rightarrow0}\dfrac{\sin ax}{\sin bx}, \,a, \,b \neq 0

\lim_{x\rightarrow0}\dfrac{\sin ax}{\sin bx}\\\\=\lim_{x\rightarrow0}[\dfrac{\sin ax}{ax}.\dfrac{ ax}{bx}.\dfrac{bx}{\sin bx}]\\\\=[\lim_{x\rightarrow0}\dfrac{\sin ax}{ax}].\frac{a}{b} .[\lim_{x\rightarrow0}\dfrac{bx}{\sin bx}]\\\\

सीमा का मान रखने पर -

=1.\frac{a}{b} / [\lim_{x\rightarrow0}\dfrac{\sin bx}{bx}]\\\\=\frac{a}{b} *1\\\\=\frac{a}{b}

अतः  \lim_{x\rightarrow0}\dfrac{\sin ax}{\sin bx}   का मान   \frac{a}{b}  होगा।

Similar questions