Physics, asked by bunnyred54, 6 months ago

please answer 12th and 13th Question​

Attachments:

Answers

Answered by BrainlyTwinklingstar
35

12th AnSwer :-

A bus is moving with a speed of 10m/son a straight road. A scooterist wishes to overtake the bus in 10 seconds. if the bus is at a distance of 1km from the scooterist with what speed should the scooterist chase the bus ?

☑ (1) 20m/s

(2) 40m/s

(3) 25m/s

(4) 10m/s

Option (1) 20m/s is right

Explaination :-

The relative velocity of scooter w.r.t bus,

 \longrightarrow  \sf  \bar { v_{sb} } = \bar { v_{s} }  - \bar { v_{b} }  = \bar { v_{s} }  - 10 \:  \:  \:  \:  \:  \: ........(1) \\

 \longrightarrow  \sf relative \: velocity =  \frac{relative \: displacement}{time}  \\

 \longrightarrow  \sf \bar { v_{s} }  - 10 =  \frac{1000}{100}  = 10 \\

 \longrightarrow \sf \bar { v_{s} }  = 10 + 10 = 20 {ms}^{ - 1}  \\

━━━━━━━━━━━━━━━

13th AnSwer :-

A particle starts its Motion from rest under the action of constant force .distance cover in first 10 s is  \sf s_1and that covered in the first 20s is \sf s_2 , then

(1) \sf s_2= 2 \sf s_1

(2) \sf s_2= 3 \sf s_1

☑ (3) \sf s_2= 4 \sf s_1

(4) \sf s_2= \sf s_1

Option (3) \sf s_2= 4 \sf s_1 is right.

Explaination :-

lf the particle is moving in a straight line under the action of constant force or under constant acceleration a using

 \longrightarrow  \sf s = ut +  \frac{1}{2} {at}^{2}  \\

Since the body starts from the rest u = 0

 \therefore \sf s =  \frac{1}{2}  {at}^{2}  \\

Now,

 \longrightarrow  \sf  s_{1} =  \frac{1}{2} a(10) ^{2}  \:  \:  \:  \:  \: .........(1) \\  \\ \longrightarrow   \sf and  \: s_{2} =  \frac{1}{2} a(20)^{2}  \:  \:  \:  \: ........(2) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Dividing eq (1) and (2) we get,

 \longrightarrow \sf \frac{  s_{1} }{s_{2}}  =  \frac{ \cancel \frac{1}{2} a {(10)}^{2} }{ { \cancel \frac{1}{2}a (20)}^{2} }  \\  \\  \longrightarrow \sf\frac{  s_{1} }{s_{2}}  =   \frac{ {(10)}^{2} }{ {(20)}^{2} }  =  \frac{100}{400}  =  \frac{1}{4}  \\  \\  \longrightarrow \sf \frac{  s_{1} }{s_{2}}  = \frac{1}{4}  \\  \\  \longrightarrow \sf {  s_{2} } = 4{s_{1}}

Similar questions