Math, asked by deborshi142, 10 months ago

Please answer me fast, very fast ​

Attachments:

Answers

Answered by tahseen619
4

  \sf{ \tt  \underline{ \pink{Ea} \blue{sy}  \:  \:  \purple{Q}uestio \red{n}}} :)

Given:

a +  \dfrac{1}{a}  =  \sqrt{3}

To Prove:

 {a}^{3}  +  \dfrac{1}{ {a}^{3} }  = 0

How to prove ?

1. As you see cube in question, It's mean we will cube both side.

2. As we are cubing, Formula will be use.

3. Where is Formula ?

 \tt \: Here  \: it's \:   \:  {(x + y)}^{3}   =  {x}^{3}  +  {y}^{3}   + 3xy(x + y)]

4. Just Put the value in Formula.

4. Sound Difficult, No way !

Solution:

L.H.S

a +  \dfrac{1}{a}  =  \sqrt{3}

[Cubing both side]

 \implies {(a +  \frac{1}{a}) }^{3}  =  {( \sqrt{3})}^{3}  \\  \\  \implies {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3.a. \frac{1}{a} (a +  \frac{1}{a}) = 3 \sqrt{3}  \\  \\  \implies {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3. \cancel{a}. \frac{1}{\cancel{a}} ( \sqrt{3} ) = 3 \sqrt{3} \\  \\ \implies {a}^{3}  +  \frac{1}{ {a}^{3} }   + 3 \sqrt{3}  = 3 \sqrt{3}  \\  \\ \implies {a}^{3}  +  \frac{1}{ {a}^{3} }   = 3 \sqrt{3}  - 3 \sqrt{3}  \\  \\ \implies \boxed{{a}^{3}  +  \frac{1}{ {a}^{3} }   = 0} \\  \\ \therefore \tt \: L.H.S = \: R.H.S \: \:\: [Proved]

Similar questions
Math, 10 months ago