Math, asked by yusuftouba, 9 months ago

Please answer step by step attachment

Attachments:

Answers

Answered by Anonymous
7

Question

Prove that

  • 1/( sec θ - tan θ ) = (1 + sin θ)/ cos θ

Prove

First take L.H.S.

==> 1/( sec θ - tan θ )

Multiply by ( sec θ + tan θ) in Numerator & denominator

==> (sec θ + tan θ)/(sec θ + tan θ)(sec θ - tan θ)

==> (sec θ + tan θ)/(sec² θ - tan² θ)

Using Formula

  • (sec² θ - tan² θ) = 1

==> (sec θ + tan θ)/1

==> (sec θ + tan θ)

Now, take R.H.S.

==> (1 + sin θ)/ cos θ

==> 1/cos θ + sin θ/ cos θ

[ 1/cos θ = sec θ , sin θ/ cos θ = tan θ ]

==>( sec θ + tan θ)

Here,

L.H.S. = R.H.S.

Hence, Proved

_________________

Answered by Anonymous
0

Answer:

 \frac{1}{sec \theta - tan \theta}  =  \frac{1 + sin \theta}{cos \theta}  \\  \\  \\  =  >  \frac{1}{ \frac{1}{cos \theta}  -  \frac{sin \theta}{cos  \theta} }  \\  \\  \\  =  >  \frac{cos \theta}{1 - sin \theta}  \times  \frac{1 + sin \theta}{1 + sin \theta}  \\  \\  \\  =  >  \frac{cos \theta(1 + sin \theta)}{(1 - sin \theta)(1 + sin \theta)}  \\  \\  \\ you \: know... \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \\  \\  \\ so... \\ \\  \\  =  =  >  >   \frac{cos \theta(1 + sin \theta)}{1 -  {sin}^{2} \theta}  \\  \\  \\  \\  =  =  >  >  \frac{cos \theta(1 + sin \theta)}{cos ^{2}  \theta}  \\  \\  \\  =  =  >  >  \frac{(1 + sin \theta)}{cos \theta}  \:  \: proved....

please mark me brainlist ✔️✔️✔️✔️

Similar questions