Please answer step by step attachment
Attachments:
Answers
Answered by
7
Question
Prove that
- 1/( sec θ - tan θ ) = (1 + sin θ)/ cos θ
Prove
First take L.H.S.
==> 1/( sec θ - tan θ )
Multiply by ( sec θ + tan θ) in Numerator & denominator
==> (sec θ + tan θ)/(sec θ + tan θ)(sec θ - tan θ)
==> (sec θ + tan θ)/(sec² θ - tan² θ)
Using Formula
- (sec² θ - tan² θ) = 1
==> (sec θ + tan θ)/1
==> (sec θ + tan θ)
Now, take R.H.S.
==> (1 + sin θ)/ cos θ
==> 1/cos θ + sin θ/ cos θ
[ ★ 1/cos θ = sec θ , sin θ/ cos θ = tan θ ]
==>( sec θ + tan θ)
Here,
L.H.S. = R.H.S.
Hence, Proved
_________________
Answered by
0
Answer:
please mark me brainlist ✔️✔️✔️✔️
Similar questions