Math, asked by srisatya26, 5 months ago

please answer this question
i need full solution
don't spam

Attachments:

Answers

Answered by BrainlyPopularman
13

GIVEN :

  \\ \bf \implies ^{2n}C_{3}: \: ^{n}C_{2} = 44:3\\

TO FIND :

• Value of 'n' = ?

SOLUTION :

  \\ \bf \implies ^{2n}C_{3}: \: ^{n}C_{2} = 44:3\\

  \\ \bf \implies \dfrac{^{2n}C_{3}}{^{n}C_{2}} =  \dfrac{44}{3}\\

• We know that –

  \\ \large\implies \red{ \boxed{ \bf ^{n}C_{r} =  \dfrac{n!}{(n - r)!(r)!}}} \\

• So that –

  \\ \bf \implies \dfrac{\dfrac{(2n)!}{(2n -3)!(3)!}}{\dfrac{n!}{(n - 2)!(2)!}} =  \dfrac{44}{3}\\

  \\ \bf \implies \dfrac{\dfrac{(2n)(2n - 1)(2n - 2)(2n - 3)!}{(2n -3)!(3)!}}{\dfrac{n(n - 1)(n - 2)!}{(n - 2)!(2)!}} =  \dfrac{44}{3}\\

  \\ \bf \implies \dfrac{\dfrac{(2n)(2n - 1)(2n - 2)}{(3)(2)(1)}}{\dfrac{n(n - 1)}{(2)(1)}} =  \dfrac{44}{3}\\

  \\ \bf \implies\dfrac{2(2n)(2n - 1)(2n - 2)}{6n(n - 1)}=  \dfrac{44}{3}\\

  \\ \bf \implies\dfrac{2(2n)(2n - 1)(n - 1)}{3n(n - 1)}=  \dfrac{44}{3}\\

  \\ \bf \implies\dfrac{2(2n)(2n - 1)}{3n}=  \dfrac{44}{3}\\

  \\ \bf \implies\dfrac{2(2n)(2n - 1)}{n}=44\\

  \\ \bf \implies4(2n - 1)=44\\

  \\ \bf \implies(2n - 1)= \dfrac{44}{4}\\

  \\ \bf \implies2n -1=11\\

  \\ \bf \implies2n=11 + 1\\

  \\ \bf \implies2n=12\\

  \\ \bf \implies n= \dfrac{12}{2}\\

  \\ \large\implies \red{ \boxed{ \bf n=6}}\\

Hence , Option (1) is correct.

Similar questions