Math, asked by vishakn0017, 9 months ago

Please explain this problem step by step.
Will mark as brainliest if I'm satisfied with the answer.
Thank you ​

Attachments:

Answers

Answered by Anonymous
1

Answer:

solution mein koi doubt aaye to puch lena

Attachments:
Answered by shadowsabers03
0

Since \displaystyle\sf{m^{th}} term is \displaystyle\sf{\dfrac{1}{n},} we have,

\displaystyle\longrightarrow\sf{a+(m-1)d=\dfrac{1}{n}\quad\quad\dots(i)}

And since \displaystyle\sf{n^{th}} term is \displaystyle\sf{\dfrac{1}{m},} we have,

\displaystyle\longrightarrow\sf{a+(n-1)d=\dfrac{1}{m}\quad\quad\dots(ii)}

Now subtract (ii) from (i).

\displaystyle\longrightarrow\sf{(i)-(ii)}

\displaystyle\longrightarrow\sf{[a+(m-1)d]-[a+(n-1)d]=\dfrac{1}{n}-\dfrac{1}{m}}

\displaystyle\longrightarrow\sf{a+(m-1)d-a-(n-1)d=\dfrac{m-n}{mn}}

\displaystyle\longrightarrow\sf{[(m-1)-(n-1)]d=\dfrac{m-n}{mn}}

\displaystyle\longrightarrow\sf{(m-1-n+1)d=\dfrac{m-n}{mn}}

\displaystyle\longrightarrow\sf{(m-n)d=\dfrac{m-n}{mn}}

\displaystyle\longrightarrow\sf{d=\dfrac{1}{mn}}

Now we put \displaystyle\sf{d=\dfrac{1}{mn}} in (i), i.e.,

\displaystyle\longrightarrow\sf{a+(m-1)\cdot\dfrac{1}{mn}=\dfrac{1}{n}}

\displaystyle\longrightarrow\sf{a+\dfrac{m-1}{mn}=\dfrac{1}{n}}

\displaystyle\longrightarrow\sf{a=\dfrac{1}{n}-\dfrac{m-1}{mn}}

\displaystyle\longrightarrow\sf{a=\dfrac{m}{mn}-\dfrac{m-1}{mn}}

\displaystyle\longrightarrow\sf{a=\dfrac{m-(m-1)}{mn}}

\displaystyle\longrightarrow\sf{a=\dfrac{m-m+1}{mn}}

\displaystyle\longrightarrow\sf{a=\dfrac{1}{mn}}

Now we have \displaystyle\sf{a=d=\dfrac{1}{mn}.}

Now, let's find \displaystyle\sf{(mn)^{th}} term.

\displaystyle\longrightarrow\sf{a_{mn}=a+(mn-1)d}

\displaystyle\longrightarrow\sf{a_{mn}=\dfrac{1}{mn}+(mn-1)\cdot\dfrac{1}{mn}}

\displaystyle\longrightarrow\sf{a_{mn}=\dfrac{1}{mn}+\dfrac{mn-1}{mn}}

\displaystyle\longrightarrow\sf{a_{mn}=\dfrac{1+mn-1}{mn}}

\displaystyle\longrightarrow\sf{a_{mn}=\dfrac{mn}{mn}}

\displaystyle\longrightarrow\sf{\underline{\underline{a_{mn}=1}}}

Hence Proved!

Similar questions