Math, asked by Anonymous, 3 months ago

please give me answer of maths question​ 3​

Attachments:

Answers

Answered by WildCat7083
4

 \sf \: { \purple{To  \: prove}} \\  \sf( \ \csc (o) -  \cot(o) ) {}^{2}  =  \frac{1 -  \cos(o) }{1 +  \cos(o) }  \\  \\  \sf \:{ \purple{ proof }}\\  \sf( \ \csc (o) -  \cot(o) ) {}^{2}  =  ( \frac{1}{ \sin(o) }  -  \frac{ \cos(o) }{ \sin(o) } ) {}^{2}  \\ \\  \sf( \ \csc (o) -  \cot(o) ) {}^{2}  = ( \frac{1 -  \cos(o) }{ \sin(o) } ) {}^{2}  \\ \\  \sf( \ \csc (o) -  \cot(o) ) {}^{2}  = ( \frac{1 -  \cos(o) }{ \sin(o) } ) {}^{2}  \\ \\   \sf \: by \: identity \\  \sf{ \purple{ \sin {}^{2} (o)  +  \cos {}^{2} (o)  = 1}} \\ \\  \sf( \ \csc (o) -  \cot(o) ) {}^{2}  =  \frac{(1 -  \cos(o)) {}^{2}  }{1 -  \cos {}^{2} (o) }  \\ \\  \sf \: by \: identity  \\  \sf \:  { \purple{{a}^{2}  -  {b}^{2}  = (a - b)(a + b)}} \\  \\  \sf( \ \csc (o) -  \cot(o) ) {}^{2}  =  \frac{(1 -  \cos(o)) {}^{2}  }{(1 -  \cos(o)(1 +  \cos(o))  }   \\ \\  \sf( \ \csc (o) -  \cot(o) ) {}^{2}  =  \frac{1 -  \cos(o) }{1 +  \cos(o) }  \\  \\

____________________________

 \sf \: @WildCat7083

Answered by umitbarman1111
2

Answer:

Here Is Your Answer Dear Friend have a nice day ahead ☺️♥️

Attachments:
Similar questions