Math, asked by vedanshlakde123, 3 months ago

please give the solution ...NO SPAMMERS ! 10 POINTS ...THE FASTEST AND CORRECT ANS WILL GET A BRAINLIEST​

Attachments:

Answers

Answered by niyatiinn
95

here's your answer!!

Attachments:
Answered by TheBrainliestUser
135

 \bf{\huge{ \red{ \underline{ \underline{Solution:}}}}}  \\  \\ \rm {Q:  \dfrac{tan^2 \: A}{(sec  \: A - 1)^2}  = \dfrac {(1 + cos \:  A)}{(1 - cos \:  A) }} \\  \\ \rm { \green{ \underline{Considering  \:  \: R.H.S:}}} \\  \\  \rm {\dfrac{(1 + cos \:  A)}{(1 - cos \:  A)} }\\  \\ \rm {Multiplying \:  \:  sec \:  A  \:  \: with  \:  \: both  \:  \: numerator \:  \:  and  \:  \: denominator.}  \\  \\ \rm {\dfrac{(sec  \: A + 1)}{(sec \:  A - 1)} }\\  \\ \rm {Multiplying \:  \:  (sec \:  A - 1) \:  \:  with \:  \:  both  \:  \: numerator \:  \:  and  \:  \: denominator.} \\  \\ \rm {\dfrac{(sec  \: A + 1) \: (sec \:  A - 1)} { (sec  \: A - 1) \: (sec \:  A - 1)}} \\  \\ \rm {\dfrac{(sec^2  \: A - 1)} { (sec  \: A - 1)^2}} \\  \\ \rm {Here, \: \: R.H.S = L.H.S} \\  \\ \rm {Hence, \: \: Proved.} \\ \\  \rm { \underline{ \blue{Algebraic \: \: Identities \: \: used:}}} \\  \\ \rm {(a + b) (a - b) = a^2 - b^2} \\ \\ \rm {(a - b) (a - b) = (a - b)^2} \\  \\ \\  \rm { \underline{ \blue{Trigonometric \: \: Identities \: \: used:}}}   \\  \\ \rm{sec \:  A \times cos \:A = 1} \\  \\ \rm {(sec^2  \: A - 1) = tan^2 \: A}

Similar questions