Math, asked by Anonymous, 1 year ago

please help in following question​

Attachments:

Answers

Answered by mysticd
1

Answer:

Option (c) is correct

Step-by-step explanation:

i) x = \frac{1}{4-\sqrt{15}}

\implies  x = \frac{4+\sqrt{15}}{(4-\sqrt{15})(4+\sqrt{15})}

 = \frac{4+\sqrt{15}}{4^{2}-(\sqrt{15})^{2}}

 = \frac{4+\sqrt{15}}{16-15}

= 4+\sqrt{15}\: ---(1)

ii) y = \frac{1}{4+\sqrt{15}}

\implies  y= \frac{4-\sqrt{15}}{(4+\sqrt{15})(4-\sqrt{15})}

 = \frac{4-\sqrt{15}}{4^{2}-(\sqrt{15})^{2}}

 = \frac{4-\sqrt{15}}{16-15}

= 4-\sqrt{15}\: ---(2)

 iii) x+y \\= 4+\sqrt{15}+4-\sqrt{15}\\=8\:--(3)

 xy =( 4+\sqrt{15})(4-\sqrt{15})\\=4^{2}-(\sqrt{15})^{2}\\=16-15\\ = 1\:---(4)

 Now, x^{3}+y^{3}\\=(x+y)^{3}-3xy(x+y)\\=8^{3}-3\times 1\times 8\\=8(8^{2}-3)\\=8(64-3)\\=8\times 61\\=488

Therefore,

Option (C) is correct

•••♪

Similar questions