Math, asked by NITESH761, 5 hours ago

please help me in this trig problem. ​

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\  \frac{a.sin \:θ + b.cos \: θ}{a.sin \:θ - b.cos \: θ }  \\  \\ here \: it \: is \: given \: that \\ tan \: θ =  \frac{a}{b}  \\  \\ so \: let \: here \\  \frac{a.sin \: θ + b.cos \:θ }{a.sin\:θ - b.cos \:θ  }  = k \\  \\ applying \: componendo \: dividendo \\ on \: both \: sides \\ we \: get \\  \\  \frac{a.sin \: θ + a.sin \:θ }{b.cos \:θ + b.cos \: θ }  =  \frac{k + 1}{k - 1}  \\  \\   \frac{2.a \: sin \:θ }{2.b \: cos \: θ}  =  \frac{k + 1}{k - 1}   \\  \\  =   \frac{a}{b}   \times tan \: θ  \\  \\  =  \frac{a}{b}  \times  \frac{a}{b}  \\  \\  =  \frac{a {}^{2} }{b {}^{2} }  =  \frac{k + 1}{k - 1}  \\  \\  \: applying \: componendo \: dividendo \\ on \: both \: sides \\ we \: get \\  \\   \frac{a {}^{2} + b {}^{2}  }{a {}^{2} - b {}^{2}  }  =  \frac{k + 1 + k - 1}{k + 1 - (k - 1)}  \\  \\  =  \frac{k + k}{1 + 1}  \\  \\  =  \frac{2k}{2} \\  \\   = k \\  \\ hence \: then \\  \\   \frac{a.sin \:θ + b.cos \: θ }{a.sin \: θ - b.cos \: θ}  =  \frac{a {}^{2}  + b {}^{2} }{a {}^{2} - b {}^{2}  }

Answered by singanaboina009335
0

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

\begin{gathered}to \: find : \\ \frac{a.sin \:θ + b.cos \: θ}{a.sin \:θ - b.cos \: θ } \\ \\ here \: it \: is \: given \: that \\ tan \: θ = \frac{a}{b} \\ \\ so \: let \: here \\ \frac{a.sin \: θ + b.cos \:θ }{a.sin\:θ - b.cos \:θ } = k \\ \\ applying \: componendo \: dividendo \\ on \: both \: sides \\ we \: get \\ \\ \frac{a.sin \: θ + a.sin \:θ }{b.cos \:θ + b.cos \: θ } = \frac{k + 1}{k - 1} \\ \\ \frac{2.a \: sin \:θ }{2.b \: cos \: θ} = \frac{k + 1}{k - 1} \\ \\ = \frac{a}{b} \times tan \: θ \\ \\ = \frac{a}{b} \times \frac{a}{b} \\ \\ = \frac{a {}^{2} }{b {}^{2} } = \frac{k + 1}{k - 1} \\ \\ \: applying \: componendo \: dividendo \\ on \: both \: sides \\ we \: get \\ \\ \frac{a {}^{2} + b {}^{2} }{a {}^{2} - b {}^{2} } = \frac{k + 1 + k - 1}{k + 1 - (k - 1)} \\ \\ = \frac{k + k}{1 + 1} \\ \\ = \frac{2k}{2} \\ \\ = k \\ \\ hence \: then \\ \\ \frac{a.sin \:θ + b.cos \: θ }{a.sin \: θ - b.cos \: θ} = \frac{a {}^{2} + b {}^{2} }{a {}^{2} - b {}^{2} } \end{gathered}

tofind:

a.sinθ−b.cosθ

a.sinθ+b.cosθ

hereitisgiventhat

tanθ=

b

a

solethere

a.sinθ−b.cosθ

a.sinθ+b.cosθ

=k

applyingcomponendodividendo

onbothsides

weget

b.cosθ+b.cosθ

a.sinθ+a.sinθ

=

k−1

k+1

2.bcosθ

2.asinθ

=

k−1

k+1

=

b

a

×tanθ

=

b

a

×

b

a

=

b

2

a

2

=

k−1

k+1

applyingcomponendodividendo

onbothsides

weget

a

2

−b

2

a

2

+b

2

=

k+1−(k−1)

k+1+k−1

=

1+1

k+k

=

2

2k

=k

hencethen

a.sinθ−b.cosθ

a.sinθ+b.cosθ

=

a

2

−b

2

a

2

+b

2

Similar questions