Math, asked by TopperSiva2003, 1 year ago

PLEASE HELP ME TO SOLVE THIS QUESTION.......PLEASE.....

The angle of elevation of the top of a pillar at any point C in the ground is 15 degree.On walking 100 m towards the pillar the angle becomes 30 degree. Find the height of the pillar and it's distance from C.

Answers

Answered by alokpal47788
0
i hope u understand
i think this is right answer
Attachments:

TopperSiva2003: it's not the answer
alokpal47788: tell me answer
TopperSiva2003: answer is 50 m and 50(2+root3)
TopperSiva2003: I don't know the steps
Answered by rohit301486
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:pillar=50\sqrt{3}\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline \bold{Given :}}

\tt:\implies Angle \: of \: elevation( \theta) = 30 \degree

\tt:\implies Angle \: of \: elevation( \theta_{o} ) = 60 \degree

\tt: \implies Distance \: DC = 100 \: m

\red{\underline \bold{To \: Find:}}

\tt: \implies Height \: of \: pillar =?

  • Given Question

\tt \circ \: Let \: height \: of \: pillar \:be \: x

\bold{In \: \triangle \: ABC : }

\tt: \implies tan \: \theta = \frac{p}{b}

\tt: \implies tan \:30 \degree = \frac{AB}{BC}

\tt: \implies \frac{1}{ \sqrt{3} } = \frac{x}{BD + DC}

\tt: \implies \frac{1}{ \sqrt{3} } = \frac{x}{BD+ 100}

\tt: \implies BD+ 100 = \sqrt{3} x

\tt: \implies BD = \sqrt{3} x - 100 - - - - - (1)

\bold{In \: \triangle \: ABD: }

 \tt: \implies tan \: \theta_{o} = \frac{p}{b}

 \tt: \implies tan \: 60 \degree = \frac{AB}{BD}

\tt: \implies \sqrt{3} = \frac{x}{ \sqrt{3} x - 100}

\tt: \implies 3x - 100 \sqrt{3} = x

\tt: \implies 3x - x = 100 \sqrt{3}

 \tt: \implies 2x = 100 \sqrt{3}

\tt: \implies x = \frac{100 \sqrt{3} }{2}

 \green{\tt: \implies x = 50 \sqrt{3} \: m}

\green{\tt \therefore Height \: of \: pillar \: is \: 50 \sqrt{3} \: m}

Similar questions