Math, asked by riyay, 4 months ago

Please help me with this question​

Attachments:

riyay: terko khud hi nhi pta tu kya bolta h
riyay: kr le fir kuch bola Maine XD
riyay: maine ye bola kya ki tu dialogue use mt kr
riyay: ????
riyay: ( ̄へ  ̄

Answers

Answered by IdyllicAurora
9

\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Trignometric Identities have been used. We see that we are given a equation to prove LHS = RHS.

Solution :-

Given,

\\\;\tt{\odot\;\;a\:\cos^{3}\theta\;+\;3a\cos\theta\:\sin^{2}\theta\;=\;\bf{m}}

\\\;\tt{\odot\;\;a\:\sin^{3}\theta\;+\;3a\cos^{2}\theta\:\sin\theta\;=\;\bf{n}}

~ For the value of (m + n) ::

This is given as,

\\\;\sf{\rightarrow\;\;(m\:+\:n)\;=\;\bf{(a\:\cos^{3}\theta\;+\;3a\cos\theta\:\sin^{2}\theta)\;+\;(a\:\sin^{3}\theta\;+\;3a\cos^{2}\theta\:\sin\theta)}}

On adding we get,

\\\;\sf{\rightarrow\;\;(m\:+\:n)\;=\;\bf{a\:\cos^{3}\theta\;+\;3a\cos\theta\:\sin^{2}\theta\;+\;a\:\sin^{3}\theta\;+\;3a\cos^{2}\theta\:\sin\theta}}

Taking out the common terms, we get

\\\;\sf{\rightarrow\;\;(m\:+\:n)\;=\;\bf{a(\cos^{3}\theta\:+\:\sin^{3}\theta)\;+\;3a\cos\theta\:\sin\theta(\cos\theta\:+\;\sin\theta)}}

This forms similar identity like,

(a + b)³ = a³ + b³ + 3ab(a + b)

  • Here a = cos θ and b = sin θ

Now applying this, we get

\\\;\bf{\rightarrow\;\;(m\:+\:n)\;=\;\bf{\orange{a(\cos\theta\:+\:\sin\theta)^{3}}}}

~ For the value of (m - n) ::

This is given as,

\\\;\sf{\rightarrow\;\;(m\:-\:n)\;=\;\bf{(a\:\cos^{3}\theta\;+\;3a\cos\theta\:\sin^{2}\theta)\;-\;(a\:\sin^{3}\theta\;+\;3a\cos^{2}\theta\:\sin\theta)}}

On opening the bracket, we get

\\\;\sf{\rightarrow\;\;(m\:-\:n)\;=\;\bf{a\:\cos^{3}\theta\;+\;3a\cos\theta\:\sin^{2}\theta\;-\;a\:\sin^{3}\theta\;-\;3a\cos^{2}\theta\:\sin\theta}}

Taking out the common terms, we get

\\\;\sf{\rightarrow\;\;(m\:-\:n)\;=\;\bf{a(\cos^{3}\theta\:-\:\sin^{3}\theta)\;-\;3a\cos\theta\:\sin\theta(\cos\theta\:-\;\sin\theta)}}

This forms a identity similar like,

✒ (a - b)³ = a³ -- 3ab(a - b)

  • Here a = cos θ and b = sin θ

Now applying this, we get

\\\;\bf{\rightarrow\;\;(m\:-\:n)\;=\;\bf{\orange{a(\cos\theta\:-\:\sin\theta)^{3}}}}

______________________________________

~ For proving the given equation ::

We are given to prove that,

\\\;\bf{\mapsto\;\;(m\:+\:n)^{2/3}\;+\;(m\:-\:n)^{2/3}\;=\;2\:a^{2/3}}

Now let's take LHS first,

\\\;\bf{\Longrightarrow\;\;L.H.S.\;=\;\bf{(m\:+\:n)^{2/3}\;+\;(m\:-\:n)^{2/3}\;=\;2\:a^{2/3}}}

Now by applying values that we got above, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\bigg(a(\cos\theta\:+\:\sin\theta)^{3}\bigg)^{2/3}\;+\;\bigg(a(\cos\theta\:-\:\sin\theta)^{3}\bigg)^{2/3}}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg(\cos\theta\:+\:\sin\theta)^{3}\bigg)^{2/3}\;+\;a^{2/3}\bigg(\cos\theta\:-\:\sin\theta)^{3}\bigg)^{2/3}}}

We see that the term a with its exponent is common in both, so let's take it common

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg((\cos\theta\:+\:\sin\theta)^{3})^{2/3}\;+\;(\cos\theta\:-\:\sin\theta)^{3})^{2/3}\bigg)}}

Now cancelling the powers by laws of exponents,

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg((\cos\theta\:+\:\sin\theta)^{2}\;+\;(\cos\theta\:-\:\sin\theta)^{2}\bigg)}}

We know that,

(a + b)² = a² + b² + 2ab

  • Here a = cos θ and b = sin θ

By applying values, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg((\cos^{2}\theta\:+\:\sin^{2}\theta\:+\:2\cos\theta\sin\theta)\;+\;(\cos\theta\:-\:\sin\theta)^{2}\bigg)}}

We know that,

(a - b)² = a² + b² - 2ab

  • Here a = cos θ and b = sin θ

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg((\cos^{2}\theta\:+\:\sin^{2}\theta\:+\:2\cos\theta\sin\theta)\;+\;(\cos^{2}\theta\:+\:\sin^{2}\theta\:-\:2\cos\theta\sin\theta)\bigg)}}

Now opening the bracket, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg(\cos^{2}\theta\:+\:\sin^{2}\theta\:+\:2\cos\theta\sin\theta\;+\;\cos^{2}\theta\:+\:\sin^{2}\theta\:-\:2\cos\theta\sin\theta\bigg)}}

Cancelling the like terms, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg(\cos^{2}\theta\:+\:\sin^{2}\theta\;+\;\cos^{2}\theta\:+\:\sin^{2}\theta\bigg)}}

Now adding the like terms, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{a^{2/3}\bigg(2\cos^{2}\theta\;+\;2\sin^{2}\theta\bigg)}}

Now taking 2 as common, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{2a^{2/3}\bigg(\cos^{2}\theta\;+\;\sin^{2}\theta\bigg)}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{2a^{2/3}\bigg(\sin^{2}\theta\;+\;\cos^{2}\theta\bigg)}}

We already know that,

\\\;\tt{\rightarrow\;\;\sin^{2}\theta\;+\;\cos^{2}\theta\;=\;1}

By applying this here, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{2a^{2/3}\bigg(1\bigg)}}

\\\;\bf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\blue{2a^{2/3}}}}

We also know that,

\\\;\bf{\Longrightarrow\;\;R.H.S.\;=\;\bf{\blue{2a^{2/3}}}}

From this we get,

\\\;\bf{\red{\Longrightarrow\;\;L.H.S.\;=\;R.H.S.\;=\;\bf{2a^{2/3}}}}

\\\;\qquad\qquad\boxed{\underline{\tt{\purple{Hence,\;\:Proved}}}}


sinha396: Awesome!
IdyllicAurora: Thanks :)
Anonymous: Fabulous!
Anonymous: wrong answer
IdyllicAurora: Thanks :) ... And its correct !!
Answered by mathdude500
6

\begin{gathered}\begin{gathered}\bf Given : -   \begin{cases} &\sf{\begin{gathered}\\\;\sf{\;a\:\cos^{3}\theta\;+\;3a\cos\theta\:\sin^{2}\theta\;=\;\sf{m}}\end{gathered}} \\ &\sf{\begin{gathered}\\\;\sf{\;a\:\sin^{3}\theta\;+\;3a\cos^{2}\theta\:\sin\theta\;=\;\sf{n}}\end{gathered}} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To \:  prove :-  \begin{cases} &\bf{ {(m + n)}^{ \frac{2}{3} }  +  {(m - n)}^{ \frac{2}{3} }  = 2 {a}^{ \frac{2}{3} } }  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:  ⟼ (a + b)³ = a³ + b³ + 3ab(a + b) \\ \bf \:  ⟼ (a + b)³ = a³ + b³ + 3ab(a + b)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline{ ❥︎ Step :- 1}

❥︎ Consider

\sf \:  ⟼{m + n}

\sf \:   = a {cos}^{3} \theta + 3a {sin}^{2} \theta \: cos\theta + a {sin}^{3} \theta + 3a {cos}^{2} \theta \: sin\theta

\sf \:   = a ({cos}^{3} \theta + 3 {sin}^{2} \theta \: cos\theta +  {sin}^{3} \theta + 3 {cos}^{2} \theta \: sin\theta)

\sf \:   = a( {cos}^{3} \theta +  {sin}^{3} \theta + 3sin\theta \: cos\theta \: (sin\theta \:  + cos\theta \: ))

\sf \:   = a {(sin\theta \: + cos\theta \:) }^{3}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline{ ❥︎ Step :- 2}

\sf \:  ⟼m - n

\sf \:   = (a {cos}^{3} \theta + 3a {sin}^{2} \theta \: cos\theta)  - ( a {sin}^{3} \theta + 3a {cos}^{2} \theta \: sin\theta)

\sf \:   = a ({cos}^{3} \theta + 3a {sin}^{2} \theta \: cos\theta  -  a {sin}^{3} \theta  -  3a {cos}^{2} \theta \: sin\theta)

\sf \:   = a( {cos}^{3} \theta  -   {sin}^{3} \theta  -  3sin\theta \: cos\theta \: (cos\theta \:   -  sin\theta \: ))

\sf \:   =  a{(cos\theta \: - sin\theta \:)}^{3}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline{ ❥︎ Step :- 3}

❥︎ Now, Consider

\sf \:  ⟼{(m + n)}^{ \frac{2}{3} }  =  { {(a(cos\theta \: + sin\theta \:))}^{3 \times  \frac{2}{3} }  }

\sf \:  ⟼{(m + n)}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  {(cos\theta \: + sin\theta \:)}^{2}

\sf \:  ⟼{(m + n)}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  ( {cos}^{2} \theta \: +  {sin}^{2} \theta \: + 2sin\theta \:cos\theta \:)

\sf \:  ⟼{(m + n)}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  (1 + 2sin\theta \:cos\theta \:)\bf \:  ⟼ (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline{ ❥︎ Step :- 4}

❥︎ Now, Consider

\sf \:  ⟼{(m  -  n)}^{ \frac{2}{3} }  =  { {(a(cos\theta \:  -  sin\theta \:))}^{3 \times  \frac{2}{3} }  }

\sf \:  ⟼{(m  -  n)}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  {(cos\theta \:  -  sin\theta \:)}^{2}

\sf \:  ⟼{(m  -  n)}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  ( {cos}^{2} \theta \: +  {sin}^{2} \theta \:  -  2sin\theta \:cos\theta \:)

\sf \:  ⟼{(m  -  n)}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  (1  -  2sin\theta \:cos\theta \:)\bf \:  ⟼ (2)

\bf \: \underline{ ❥︎ Step :- 5}

❥︎ Consider LHS,

\bf \:{(m + n)}^{ \frac{2}{3} }  +  {(m - n)}^{ \frac{2}{3} }

\sf \:   =  {a}^{ \frac{2}{3} }  (1 + 2sin\theta \:cos\theta \:) +   {a}^{ \frac{2}{3} }  (1  -  2sin\theta \:cos\theta \:)

\sf \:   =  {a}^{ \frac{2}{3} } \bigg(  (1 + 2sin\theta \:cos\theta \:) +   (1  -  2sin\theta \:cos\theta \:) \bigg)

\sf \:   =  {a}^{ \frac{2}{3} } \bigg(  1 +  \cancel{2sin\theta \:cos\theta \:} +   1  -   \cancel{2sin\theta \:cos\theta \:} \bigg)

\sf \:   = 2 {a}^{ \frac{2}{3} }

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:  ⟼ Explore  \: more } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

─━─━─━─━─━─━─━─━─━─━─━─━─

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

─━─━─━─━─━─━─━─━─━─━─━─━─

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

─━─━─━─━─━─━─━─━─━─━─━─━─

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions