Math, asked by jishughosh2012, 10 months ago

Please help prove both the sides equal​

Attachments:

Answers

Answered by hkthakur302
0

LHS =

(sin . cos ) + sin²

tan

= (sin . cos) ÷ sin + sin²

cos

= (sin . cos) x cos + sin²

sin

= cos² + sin²

= 1

= RHS

Brainliest to banta hai

Answered by Anonymous
8

Question:

Prove that {\sf{\ \ {\dfrac{sin \theta cos \theta}{tan \theta}} + sin^2 \theta = 1}}

Step-by-step explanation:

To Prove : {\sf{\ \ {\dfrac{sin \theta cos \theta}{tan \theta}} + sin^2 \theta = 1}}

_____________________________

Solution :

L.H.S. = {\sf{\ \ {\dfrac{sin \theta cos \theta}{tan \theta}} + sin^2 \theta}}

_____________________________

{\boxed{\tt{Identity \ : \ tan \theta = {\dfrac{sin \theta}{cos \theta}} }}}

_____________________________

\implies{\sf{ {\dfrac{sin \theta cos \theta}{ {\dfrac{sin \theta}{cos \theta}} }} + sin^2 \theta}}

_____________________________

\implies{\sf{ sin \theta cos \theta \times {\dfrac{cos \theta}{sin \theta}} + sin^2 \theta}}

_____________________________

\implies{\sf{ cos \theta \times cos \theta + sin^2 \theta}}

_____________________________

\implies{\sf{cos^2 \theta + sin^2 \theta}}

_____________________________

{\boxed{\tt{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}

_____________________________

\implies{\boxed{\sf{1}}}

_____________________________

= R.H.S.

Hence, proved !!

Similar questions