please it is very urgent for me send photo
Attachments:
Answers
Answered by
6
If ( x - 1/x ) = 3+2√2 , Find the value of 1/4(x³ - 1/x³)
- ( x - 1/x ) = 3+2√2 .........(1)
- Value of 1/4(x³ - 1/x³)
We know,
★ ( a-b)² = a² + b² - 2ab
So,
★ ( x - 1/x )² = x² + 1/x² - 2.x.1/x
➥ (x - 1/x)² = x² + 1/x² - 2
Now, keep value by equ(1)
➥ (3+2√2)² = x²+1/x² - 2
➥3²+(2√2)²+2.3.2√2 = x²+1/x² - 2
➥ x² + 1/x² = (9+8+12√2)-2
➥ x² + 1/x² = 15 + 12√2
Again,
★(a³-b³) = (a-b)(a²+b²+ab)
So,
➥ (x³ - 1/x³ ) = (x - 1/x)(x² + 1/x² + x . 1/x)
➥(x³ - 1/x³ ) = (x - 1/x)(x² + 1/x² + 1)
keep value by equ(1) and (2)
➥ (x³ - 1/x³ ) = ( 3+2√2)(15+12√2+1)
➥ (x³ - 1/x³ ) = (3+2√2)(16+12√2)
➥ (x³ - 1/x³ ) = 4(3+2√2)(4+3√2)
➥ (x³ - 1/x³ ) = 4(12+9√2+8√2+12)
➥ (x³ - 1/x³ ) = 4(24+17√2)
Now, calculate ,
➥ 1/4 (x³ - 1/x³ ) = 4(24+17√2)/4
➥ 1/4 (x³ - 1/x³ ) = (24 + 17√2) (Ans.)
_____________________
Similar questions