Math, asked by 7013946285, 10 months ago

please send me the answer for the question below ​

Attachments:

Answers

Answered by BrainlyYoda
0

Question:

A(a cos 35° , 0) , B(0 , a cos 55°) then find \overline{AB} ?

Solution:

We have to find the distance between points A and B.

Distance \ between \ two \ points, \ \overline{AB} = \sqrt{(x_{2} - x_{1})^{2}   +  (y_{2} - y_{1})^{2}}

x₁ = a cos 35°

x₂ = 0

y₁ = 0

y₂ = a cos 55°

\overline{AB} = \sqrt{(0 - a cos35^{\circ} )^{2}   +  (a cos 55^{\circ} - 0)^{2}}

\overline{AB} = \sqrt{a^{2}  cos^{2} 35^{\circ}  +  a^{2}  cos^{2}  55^{\circ}}

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  cos^{2}  55^{\circ}]}

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  cos^{2}  (90-55)^{\circ}]} \ \ \ \ [ We \ know  \ that \ sin \theta = cos(90^{\circ} - \theta)]

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  sin^{2}  35^{\circ}]} \ \ \ \ [ We \ know  \ that \ sin \theta = cos(90^{\circ} - \theta)]

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  sin^{2}  35^{\circ}]} \ \ \ \ [ We \ know  \ that \ sin^{2} \theta + cos^{2} \theta = 1]

\overline{AB} = \sqrt{a^{2}  * 1}

\overline{AB} = \sqrt{a^{2}}

\overline{AB} = a

The distance between two points A and B (\overline{AB}) is a

Answered by Anonymous
1

Step-by-step explanation:

 \bf \huge \pink{dur} \red{ga} \:  \green{cha}uhan

Question:

A(a cos 35° , 0) , B(0 , a cos 55°) then find \overline{AB} ?

Solution:

We have to find the distance between points A and B.

Distance \ between \ two \ points, \ \overline{AB} = \sqrt{(x_{2} - x_{1})^{2}   +  (y_{2} - y_{1})^{2}}

x₁ = a cos 35°

x₂ = 0

y₁ = 0

y₂ = a cos 55°

\overline{AB} = \sqrt{(0 - a cos35^{\circ} )^{2}   +  (a cos 55^{\circ} - 0)^{2}}

\overline{AB} = \sqrt{a^{2}  cos^{2} 35^{\circ}  +  a^{2}  cos^{2}  55^{\circ}}

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  cos^{2}  55^{\circ}]}

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  cos^{2}  (90-55)^{\circ}]} \ \ \ \ [ We \ know  \ that \ sin \theta = cos(90^{\circ} - \theta)]

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  sin^{2}  35^{\circ}]} \ \ \ \ [ We \ know  \ that \ sin \theta = cos(90^{\circ} - \theta)]

\overline{AB} = \sqrt{a^{2}  [cos^{2} 35^{\circ}  +  sin^{2}  35^{\circ}]} \ \ \ \ [ We \ know  \ that \ sin^{2} \theta + cos^{2} \theta = 1]

\overline{AB} = \sqrt{a^{2}  * 1}

\overline{AB} = \sqrt{a^{2}}

\overline{AB} = a

The distance between two points A and B (\overline{AB}) is a

Similar questions