please solve, a question from indian insitute of technology (IIT JEE 2014) exams
![](https://hi-static.z-dn.net/files/d4b/a43475492889ebbb4da10184d243827a.jpg)
Answers
Since it is for grade XII, we can use also trigonometry and coordinate geometry. Here is a solution. If you are allowed use of calculator, it is much simpler.
We deduce quickly that AB = BC (= b say), as ∠B = ∠C = 80°. Let the
Coordinates of B(0, 0), A(b Cos80°, b Sin 80°), C(2b Cos80°, 0).
Equation of line AB: y = x tan80° ---(1)
Equation of line CD: (y - 0)/(x - 2b Cos80°) = - tan60° ----(2)
So for point D: (1) = (2).
x = 2b cos80° Tan60° / (Tan80° + tan60°)
= 2 b Cos² 80° Sin60° /Sin140° = 2b Cos²80° Sin60° / Sin40°
y = 2b Sin80° cos80° sin60°/sin40° = b sin160° sin60° / sin40°
= b Sin20° Sin60° / Sin40°
D = (2b Cos²80° Sin60° /Sin40° , b Sin20° Sin60 /SIn40°) ---(3)
Now equation of line BE : y = x Tan70° ---(4)
equation of line AC: (y - 0)/(x - 2b Cos80°) = - tan80°
or, AC: y = -x Tan80°+ 2b Sin80° ---(5)
Point E: from (4) & (5): x = 2b Sin80° / (Tan70° +Tan80°)
x = 2b Sin 80° Cos80° Cos70° / Sin(70°+80°)
= b Sin160 Cos70 / Sin 150° = b Sin20° Sin20° / SIn30°
= 2b Sin² 20° .
y = 2b Sin²20° Tan70° = 2b Sin²20° Cot20°
= 2b Sin20° Cos20° = b Sin40°
E(2b Sin°20°, b Sin40°)
Slope of DE = m = (y2-y1)/(x2 - x1)
Angle made by DE with horizontal = 50°.
At point E: y = 180° - 80° - 50° - 30° = 20°
From ΔDOE, angle x = 180° - 50° - 20° = 110°
Answer = x = 110°
Heya user,
I'll be using Complete Trigonometry to solve your problem + A
trick + Sine Rule + the fact that sin A = cos ( 90 - A ) Hehe
--> Let AB = AC = x
==> BC = x sin 20° / sin 80° <-- In ABC
Now, CE = BC sin 70° / sin 30° <--- In Triangle BCE
-----> OC = BC sin 70° / sin 50° <--- In Triangle OBC
-----> AD = CD = BC sin 80° / sin 40° <--- In Triangle BDC
-----> BE = AE sin 20° / sin 10° <--- In triangle ABE
<--- (i)
-----> BE = BC sin 80° / sin 30° <--- In triangle BCE
<--- (ii)
From (i) and (ii) AE = BC sin 80° sin 10° / ( sin 30° sin 20° )
Now, CE / OC = sin 50° / sin 30° = 2 sin50°
Also, AD / AE = [ sin 30° sin 20° ] / [ sin 40° sin 10° ]
= [ 2 sin 10° cos 10° ] / [ 2 sin 40° sin 10° ]
= [ cos 10° ] / [ sin 40 ]° = sin 80° / sin 40°
= 2 cos 40° = 2 sin 50°
Now, since, CE / OC = AD / AE and Angle C = Angle A,
Triangle ECO is similar to Triangle DAE
=> AED = COE = 130° and ADE = CEO = 30°
Hence, x = 110° .... Hope you find it EASY too !!!