Please solve both parts of Qno. 19
Answers
a.
Given, ∠1 = ∠2
According to the properties of scalene triangles, if bases angles are equal then sides containing them become equal.
∴ PT = PS ...( i )
As ΔNSQ ≅ ΔMTR,
By c.p.c.t ( corresponding part of congruent triangle ),
SQ = TR ...( ii )
In ( i ), divide both sides by SQ.
From ( ii ), SQ = TR,
Thus in ΔPQR,
By the converse of Thales theorem,
⇒ ST ║ QR
∴ ∠1 = ∠Q ( Corresponding angles )
In ΔPTS and ΔPRQ,
∠1 = ∠Q
∠SPT = ∠QPR
Two angles are equal, the remaining angles will also be equal.
Hence, proved that ΔPTS ΔPRQ by AA similarity criterion.
b.
In Δ ΔAMD, ∠AMD = 90°
By Pythagoras theorem,
⇒ AD^2 = AM^2 + MD^2
⇒ AM^2 = AD^2 - MD^2 ...( i )
In ΔAMC, ∠AMC = 90°
By Pythagoras theorem,
⇒ AC^2 = AM^2 + MC^2
As MC is sum of MD and DC, ( MC )^2 = ( MD + DC )^2. Substitute the value of AM^2 from ( i ).
⇒ AC^2 = AD^2 - MD^2 + ( MD + DC )^2
⇒ AC^2 = AD^2 - MD^2 + ( MD + BC / 2 )^2
⇒ AC^2 = AD^2 - MD^2 + MD^2 + ( BC / 2 )^2 + MD.BC
⇒ AC^2 = AD^2 + MD.BC + ( BC^2 / 4 ) ...( ii )
In ΔABM, ∠AMB = 90°
By Pythagoras theorem,
⇒ AB^2 = AM^2 + BM^2
⇒ AB^2 = ( AD^2 - MD^2 ) + ( BD - MD )^2
⇒ AB^2 = AD^2 - MD^2 + ( BC / 2 - MD )^2
⇒ AB^2 = AD^2 - MD^2 + ( BC^2 ) / 4 + MD^2 - BC.MD
⇒ AB^2 = AD^2 - BC.MD + ( BC^2 ) / 4 ...( iii )
Adding ( ii ) & ( iii ),
⇒ AB^2 + AC^2 = AD^2 + MD.BC + ( BC^2 / 4 ) + AD^2 - BC.MD + ( BC^2 ) / 4
⇒ AB^2 + AC^2 = 2AD^2 + ( BC^2 / 2 )
⇒ AB^2 + AC^2 = 2AD^2 + 1 / 2 ( BC^2 )
⇒ AB^2 + AC^2 = 2AD^2 + 1 / 2 ( 2 BD^2 )
⇒ AB^2 + AC^2 = 2AD^2 + 1 / 2 ( 4 BD^2 )
⇒ AB^2 + AC^2 = 2AD^2 + 2BD^2
⇒ AB^2 + AC^2 = 2( AD^2 + BD^2 )
Hence, proved.