Math, asked by BrainlyExpert2006, 9 months ago

Please solve it guys​

Attachments:

Answers

Answered by MaIeficent
10

Step-by-step explanation:

Question:-

Find the difference in the Simple Interest and Compound Interest on Rs. 625 for 2 years at the rate of 4% P.A

\bf\underline{\underline{\red{Given:-}}}

  • Principal (P) = Rs.625

  • Time (n) = 2 years

  • Rate (r) = 4%

\bf\underline{\underline{\blue{To\:Find:-}}}

  • The difference in the Simple Interest and Compound Interest.

\bf\underline{\underline{\green{Solution:-}}}

\rm \leadsto Simple \: Interest = \dfrac{PTR}{100}

Here:-

• P = Rs. 625 , R = 4% , T = 2 years

\rm = \dfrac{ 625 \times 4 \times 2}{100}

\rm = \dfrac{5000}{100}

\rm = 50

\rm \dashrightarrow \underline{  \: \: \underline{ \:  Simple\: Interest = Rs.50 \: } \:  \: }

Now, To find the Compound Interest , first we need to find Amount

\rm \leadsto Amount= P\bigg(1 +\dfrac{r}{100}\bigg)^{n}

Here:-

• P = Rs. 625, n = 2 years , r = 4%

\rm = 625\times \bigg(1 +\dfrac{4}{100}\bigg)^{2}

\rm = 625\times \bigg(\dfrac{100+4}{100}\bigg)^{2}

\rm = 625\times \bigg(\dfrac{104}{100}\bigg)^{2}

\rm = 625\times \bigg(\dfrac{26}{25}\bigg)^{2}

\rm = 625\times \dfrac{26\times 26}{25\times 25}

\rm = 625\times \dfrac{676}{625}

\rm = \cancel{625} \times \dfrac{676}{\cancel{625}}

\rm =676

\rm Amount =676

\rm \leadsto Compound \: Interest = Amount - Principal

\rm = 676 - 625

\rm = 51

\rm \dashrightarrow \underline{  \: \: \underline{ \:  Compound \: Interest = Rs.51 \: } \:  \: }

Now,

\rm Compound \: Interest  - Simple\: Interest

\rm = 51 - 50

\rm = 1

The difference in Simple Interest and Compound Interest is Rs. 1

Similar questions