Please solve question number 18 and 19 ASAP. Its important for my exam.
Attachments:
Answers
Answered by
3
Q18.
The formula GA² + GB² + GC² = 1/3 * (AB² + BC² + CA² ) is VALID for all triangles ABC.
Given A(-a,0), B(0, a), C(α, β).
Let the Centroid G = (x , y)
x = (-a + 0 + α) /3 = (α - a)/3
y = (0 + a + β) / 3 = (a + β)/3
GA² = (α +2a)²/3² + (a+β)²/3² = [ α² + 5a²+4aα + β² + 2 aβ ] /9
GB² = (α - a)²/3² + (β - 2a)²/3² = [ α² + 5a² - 2aα + β² - 4aβ ] / 9
GC² = (-a - 2α)²/3² + (a - 2β)²/3² = [ 2a² + 4α² + 4aα + 4β² -4aβ ] / 9
LHS = (6 α² + 12 a² + 6 β² + 6 aα - 6 aβ) / 9
AB² = (0+a)²+ (a-0)² = 2a²
BC² = α² + (β - a)²
CA² = (α+a)² + β²
RHS = (4 a² + 2 α² + 2β² - 2 a β + 2 a α) /3
So you see that LHS = RHS
=========
Q19
Given ΔABC: A(-3,2) B(3,2) C(-2,-3).
=> Centroid G : [ (-3+3-2)/3 , (2+2-3)/3 ] = [ -2/3 , 1/3 ]
Midpoint of line segment between (a, b) & (c , d) is : [ (a+c)/2 , (b+d)/2]
F = Midpoint of AB: [ (-3+3)/2 , (2+2)/2 ] = [0, 2]
E = Midpoint of CA : [ (-3-2)/2 , (2-3)/2 ] = [-5/2 , -1/2 ]
D = Midpoint of BC : [ (3-2)/2 , (2-3)/2 ] = [1/2 , -1/2 ]
=> Centroid of ΔDEF: [ (0-5/2 +1/2 )/3 , (2 -1/2 -1/2)/3 ] = [ 2/3, 1/3 ]
We can see that the coordinates of G are same in both cases.
The formula GA² + GB² + GC² = 1/3 * (AB² + BC² + CA² ) is VALID for all triangles ABC.
Given A(-a,0), B(0, a), C(α, β).
Let the Centroid G = (x , y)
x = (-a + 0 + α) /3 = (α - a)/3
y = (0 + a + β) / 3 = (a + β)/3
GA² = (α +2a)²/3² + (a+β)²/3² = [ α² + 5a²+4aα + β² + 2 aβ ] /9
GB² = (α - a)²/3² + (β - 2a)²/3² = [ α² + 5a² - 2aα + β² - 4aβ ] / 9
GC² = (-a - 2α)²/3² + (a - 2β)²/3² = [ 2a² + 4α² + 4aα + 4β² -4aβ ] / 9
LHS = (6 α² + 12 a² + 6 β² + 6 aα - 6 aβ) / 9
AB² = (0+a)²+ (a-0)² = 2a²
BC² = α² + (β - a)²
CA² = (α+a)² + β²
RHS = (4 a² + 2 α² + 2β² - 2 a β + 2 a α) /3
So you see that LHS = RHS
=========
Q19
Given ΔABC: A(-3,2) B(3,2) C(-2,-3).
=> Centroid G : [ (-3+3-2)/3 , (2+2-3)/3 ] = [ -2/3 , 1/3 ]
Midpoint of line segment between (a, b) & (c , d) is : [ (a+c)/2 , (b+d)/2]
F = Midpoint of AB: [ (-3+3)/2 , (2+2)/2 ] = [0, 2]
E = Midpoint of CA : [ (-3-2)/2 , (2-3)/2 ] = [-5/2 , -1/2 ]
D = Midpoint of BC : [ (3-2)/2 , (2-3)/2 ] = [1/2 , -1/2 ]
=> Centroid of ΔDEF: [ (0-5/2 +1/2 )/3 , (2 -1/2 -1/2)/3 ] = [ 2/3, 1/3 ]
We can see that the coordinates of G are same in both cases.
ameyashrivastav:
will rem.
Similar questions