Math, asked by amber17, 1 year ago

please solve step by step and send photo

Attachments:

tejasri2: but I couldn't send u photo
amber17: so send photo
tejasri2: some connection problem
amber17: so write step by step answer
tejasri2: the answer is 6
amber17: what is ur whatapp no
tejasri2: how can I write logs and poqers
tejasri2: I don't have what's up
amber17: send answer after some time
tejasri2: okk

Answers

Answered by abhi178
3
Given, \bold{(2^{log_6^{18}}).(3^{log_6^3})}
Let y = \bold{(2^{log_6^{18}}).(3^{log_6^3})}
Taking log both sides with base 6
\bold{log_6^y=log_6^{(2^{log_6^{18}}).(3^{log_6^3})}}
\bold{log_6^y= log_6^{18}log_6^2+log_6^3log_6^3}
\bold{log_6^y= log_6^{6\times 3}log_6^2+log_6^3log_6^3}
\bold{log_6^y= (log_6^6+log_6^3)log_6^2+log_6^3log_6^3}
\bold{log_6^y= (1+log_6^3)log_6^2+log_6^3log_6^3}
\bold{log_6^y= log_6^2+log_6^3(log_6^2+log_6^3)}
\bold{log_6^y= log_6^2+log_6^3.log_6^{3\times2}}
\bold{log_6^y= log_6^2+log_6^3.log_6^6}\\\bold{log_6^y=log_6^2+log_6^3.1}\\\bold{log_6^y=log_6^{3\times2}}\\\bold{log_6^y=log_6^6}\\\bold{log_6^y=1}\\\\\boxed{\boxed{\bold{y=6}}}

tejasri2: hi
tiwaavi: Good ...! :D
Answered by tejasri2
1
here is ur answer

i hope it helps u
Attachments:
Similar questions