Math, asked by ifra0929, 10 months ago

please solve this ques step by step​

Attachments:

Answers

Answered by BrainlyTornado
1

QUESTION:

\frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  } -\frac{2 \sqrt{5} }{ \sqrt{6} +  \sqrt{5}  }  -  \frac{3 \sqrt{2} }{ \sqrt{15}  + 3 \sqrt{2} }

TO DO:

SIMPLIFICATION.

EXPLANATION:

RATIONALZING THE FIRST TERM:

IDENTITY\:USED:\\ (A-B)(A+B)=(A+B)^2

   \frac{7 \sqrt{3} }{ \sqrt{10}  +  \sqrt{3} }  \times  \frac{ \sqrt{10} -  \sqrt{3}  }{ \sqrt{10}  -  \sqrt{3} } \\  =  \frac{7 \sqrt{3} ( \sqrt{10} -  \sqrt{3} ) }{  { (\sqrt{10}) }^{2} -  {( \sqrt{3} )}^{2}  }  \\  =  \frac{7 \sqrt{3} ( \sqrt{10} -  \sqrt{3} )}{10 - 3}  \\  =   \frac{7 \sqrt{3}( \sqrt{10}  -  \sqrt{3} ) }{7}  \\  = \sqrt{30}  - 3 </p><p>

RATIONALZING THE SECOND TERM:

 \frac{ - 2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  \times  \frac{ \sqrt{6}  -  \sqrt{5} }{ \sqrt{6}  -  \sqrt{5} }  \\   =  \frac{ - 2 \sqrt{5} ( \sqrt{6}  -  \sqrt{5}) }{ { (\sqrt{6}) }^{2}   -  {( \sqrt{5)} }^{2} }  \\  =  \frac{ - 2 \sqrt{30}   + 2(5)}{6 - 5}  \\  = 10 - 2 \sqrt{30}

RATIONALIZING THE THIRD TERM:

  \frac{ - 3 \sqrt{2} }{ \sqrt{15}  + 3 \sqrt{2} }  \times  \frac{\sqrt{15}   -  3 \sqrt{2}}{\sqrt{15}   - 3 \sqrt{2}}\\  =   \frac{ - 3 \sqrt{2}(\sqrt{15}   -  3 \sqrt{2})}{ {( \sqrt{15)} }^{2}  -  {(3 \sqrt{2)} }^{2} }   \\  =  \frac{ - 3( \sqrt{30 } - 6) }{15 - (9 \times 2)}  \\  =  \frac{ - 3( \sqrt{30} - 6) }{ - 3}  \\  =  \sqrt{30}  - 6

ADD THE TERMS AS WE HAVE TOOK THE TERM WITH NEGATIVE SIGN:

  \sqrt{30}  - 3+10 - 2 \sqrt{30}+\sqrt{30}  - 6\\ =  - 9 + 10 + 2 \sqrt{30}  - 2 \sqrt{30} \\   = 10 - 9 \\  = 1

HENCE ANSWER IS 1.

Similar questions