Math, asked by beingnawab00, 2 months ago

please solve this question
thank you​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:I \:  =  \: \displaystyle\int \dfrac{ {x}^{5}  -  {2x}^{3}  - 2x}{ {x}^{2}  + 1} \: dx

On adding and Subtracting 'x' in numerator, we get

\rm :\longmapsto\:I \:  =  \: \displaystyle\int \dfrac{ {x}^{5}  -  {2x}^{3}  - 2x + x - x}{ {x}^{2}  + 1} \: dx

can be re-arranged as

\rm :\longmapsto\:I \:  =  \: \displaystyle\int \dfrac{ {x}^{5}  -  {2x}^{3}  + x  -3 x}{ {x}^{2}  + 1} \: dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int \dfrac{x( {x}^{4}  -  {2x}^{2}  + 1)  -3 x}{ {x}^{2}  + 1} \: dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int \dfrac{x {( {x}^{2} - 1) }^{2}   -3 x}{ {x}^{2}  + 1} \: dx

We know,

 \boxed{ \bf{ \:  {(x - y)}^{2} =  {(x + y)}^{2} - 4xy}}

So, using this

\rm :\longmapsto\:I \:  =  \: \displaystyle\int \dfrac{x { \bigg(( {x}^{2} + 1) }^{2}  - 4 {x}^{2}  \bigg)  -3 x}{ {x}^{2}  + 1} \: dx

\rm :\longmapsto\:I = \displaystyle\int \dfrac{x {( {x}^{2}  + 1)}^{2}  - 4 {x}^{3}  - 3x}{ {x}^{2}  + 1}

\rm :\longmapsto\:I = \displaystyle\int \dfrac{x {( {x}^{2}  + 1)}^{2}  - 4 {x}^{3}  - 4x + x}{ {x}^{2}  + 1}

\rm :\longmapsto\:I = \displaystyle\int \dfrac{x {( {x}^{2}  + 1)}^{2}  - 4x({x}^{2} + 1) + x}{ {x}^{2}  + 1}

\rm :\longmapsto\:I = \displaystyle\int x( {x}^{2}  + 1)dx - \displaystyle\int 4xdx + \displaystyle\int \dfrac{x}{ {x}^{2} + 1 }dx

\rm :\longmapsto\:I = \displaystyle\int ({x}^{3}  + x)dx - \displaystyle\int 4xdx +\dfrac{1}{2}  \displaystyle\int \dfrac{2x}{ {x}^{2} + 1 }dx

We know,

 \boxed{ \bf{\displaystyle\int  {x}^{n} dx\:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c }}

and

 \boxed{ \bf{ \displaystyle\int  \frac{f'(x)}{f(x)} dx\: =  logf(x) + c  }}

So, on applying these formula's we get,

\rm :\longmapsto\:I = \dfrac{ {x}^{4} }{4}  + \dfrac{ {x}^{2} }{2}  -  {2x}^{2}  + \dfrac{1}{2}log | {x}^{2} + 1 |   + c

\rm :\longmapsto\:I = \dfrac{ {x}^{4} }{4}   -  \dfrac{ {3x}^{2} }{2}+ \dfrac{1}{2}log | {x}^{2} + 1 |   + c

Additional Information :-

 \boxed{ \bf{ \displaystyle\int kdx\:  = kx + c}}

 \boxed{ \bf{ \displaystyle\int  {e}^{x} dx\:  =  {e}^{x}  + c}}

 \boxed{ \bf{ \displaystyle\int  \frac{1}{x} dx\:  =log |x|   + c}}

 \boxed{ \bf{ \displaystyle\int cosx \: dx\:  = sinx + c}}

 \boxed{ \bf{ \displaystyle\int sinx \: dx\:  = -  cosx + c}}

Aliter Method :-

The given integral is

\rm :\longmapsto\:I \:  =  \: \displaystyle\int \dfrac{ {x}^{5}  -  {2x}^{3}  - 2x}{ {x}^{2}  + 1} \: dx

Since, degree of numerator > degree of denominator.

Using Long division method,

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{3} - 3x\:\:}}}\\ {\underline{\sf{ {x}^{2} + 1}}}& {\sf{{x}^{5}  -  {2x}^{3} - 2x\:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  -  {x}^{5}  - {x}^{3}   \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: -  {3x}^{3} - 2x  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:   \: {3x}^{3}  + 3x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  x  \:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

So, using long division we get

\rm :\longmapsto\:I = \displaystyle\int \bigg( {x}^{3} - 3x + \dfrac{x}{ {x}^{2}  + 1} \bigg) dx

can be rewritten as

\rm :\longmapsto\:I = \displaystyle\int \bigg( {x}^{3} - 3x +\dfrac{1}{2}  \dfrac{2x}{ {x}^{2}  + 1} \bigg) dx

\rm :\longmapsto\:I = \dfrac{ {x}^{4} }{4}   -  \dfrac{ {3x}^{2} }{2}+ \dfrac{1}{2}log | {x}^{2} + 1 |   + c

Similar questions