Math, asked by mayank9597, 2 months ago

please tell me solution of this question

We have to rationalise the denominator ​

Attachments:

Answers

Answered by ItzAditt007
2

Answer:-

\\ \tt\mapsto \dfrac{1 +  \sqrt{2} }{2 -  \sqrt{2} } .

\\  =   \tt\frac{1 +  \sqrt{2} }{2 -  \sqrt{2} } \times  \frac{2 +  \sqrt{2}}{2 +  \sqrt{2} }

\\  =  \tt \dfrac{(1 +  \sqrt{2})(2 +  \sqrt{2})  }{(2 +  \sqrt{2})( 2 -  \sqrt{2} ) } .

\\  =  \tt \frac{2 +  \sqrt{2}  + 2 \sqrt{2}  + 2}{(2) {}^{2}  - ( \sqrt{2}) {}^{2}  }

As (a+b) (a-b) = a²-b².

\\ =  \tt \frac{ 4 + 3 \sqrt{2} }{4 - 2}

\\ \large{\red{  \bf=  \boxed{  \blue{ \bf\frac{4 + 3 \sqrt{2} }{2} .}}}}

Answered by Salmonpanna2022
22

Answer:

 \frac{4 + 3 \sqrt{2} }{2}  \\

Step-by-step explanation:

Question:

 \frac{1 +  \sqrt{2} }{2 -  \sqrt{2} }  \\

Solution:

 \frac{1 +  \sqrt{2} }{2 -  \sqrt{2} }  \\

==> $\frac{{1}\mathrm{{+}}\sqrt{2}}{{2}\mathrm{{-}}\sqrt{2}}$×$\frac{{2}\mathrm{{+}}\sqrt{2}}{{2}\mathrm{{+}}\sqrt{2}}$

==> $\frac{{\mathrm{(}}{1}\mathrm{{+}}\sqrt{2}{\mathrm{)(}}{2}\mathrm{{+}}\sqrt{2}}{{2}^{2}\mathrm{{-}}{\mathrm{(}}\sqrt{2{\mathrm{)}}^{2}}}$

==> $\frac{{1}{\mathrm{(}}{2}\mathrm{{+}}\sqrt{2}{\mathrm{)}}\mathrm{{+}}\sqrt{2}{\mathrm{(}}{2}\mathrm{{+}}\sqrt{2}{\mathrm{)}}}{{4}\mathrm{{-}}{2}}$

==> $\frac{{2}\mathrm{{+}}\sqrt{2}\mathrm{{+}}{2}\sqrt{2}\mathrm{{+}}{\mathrm{(}}\sqrt{2}{\mathrm{)}}^{2}}{2}$

==> $\frac{{4}\mathrm{{+}}{3}\sqrt{2}}{2}$ Ans.

 {}^{i \: hope \: its \: help \: you.}

Similar questions