Math, asked by confused12, 11 months ago

Please tell me the answer​

Attachments:

Answers

Answered by praneethks
1

Answer:

  \frac{ {x}^{2}  + 1}{x}  = 3 \frac{1}{3}  =  >   \frac{ {x}^{2} }{x}  +  \frac{1}{x}  =  \frac{10}{3} =  >

x +  \frac{1}{x} =  \frac{10}{3}

Square on both sides, we get

 {(x +  \frac{1}{x} )}^{2}  =  \frac{100}{9}  =  >  {x}^{2}  +  \frac{1}{ {x}^{2}  } + 2 =

 \frac{100}{9}

Now subtract 4 on both sides

x^{2}  +  \frac{1}{ {x}^{2} }  + 2 - 4 =  \frac{100}{9} - 4 =  >

 {x}^{2}  +  \frac{1}{ {x}^{2} } - 2 =  \frac{100 - 36}{9} =  >  {(x -  \frac{1}{x}) }^{2}  =

 \frac{64}{9} =  > x -  \frac{1}{x}   =  \sqrt{ \frac{64}{9} }  =  > x -  \frac{1}{x}  =  \frac{8}{3}

We also know that

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \frac{100 - 18}{9}  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \frac{82}{9}

 {x}^{3} -  \frac{1}{ {x}^{3} }  = (x -  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} } + 1) =   >

 {x}^{3}  -  \frac{1}{ {x}^{3}} = ( \frac{8}{3} )( \frac{82}{9} + 1) =  \frac{8 \times 91}{3 \times 9} =  \frac{728}{27}

Hope it helps you.

Similar questions