CBSE BOARD X, asked by subham1234680, 6 months ago

please tell the answer faster ​

Attachments:

Answers

Answered by mahiimodii
1

Answer:

169/49

Explanation:

=\frac{2(1+SinA(1-SinA)}{2(1+CosA)(1-CosA)}

=\frac{(1-SinA)(1+SinA)}{(1+CosA)(1-CosA)}

Since, [a-b][a+b]= a^2-b^2

=\frac{1^{2}- Sin^{2} A }{1^{2}- Cos^{2}A }

Since,Sin^{2} A+Cos^{2} A=1

=\frac{Cos^{2} A}{Sin^{2} A}

Since, Tan A= Sin A/ Cos A and Cot a= 1/ TanA

Cot A= Cos A/Tan A

Now,

=\frac{(Cos A)( CosA)}{(SinA)(SinA)}

=(CotA)(CotA)

=Cot^{2}A

Hence,

\frac{2(1+SinA(1-SinA)}{2(1+CosA)(1-CosA)}=Cot^{2}A

Given that Cot A= 13/7,

Cot^{2} A= (\frac{13}{7})^{2}

=\frac{169}{49}

P.S.: Please make do with theta as A because I could not find the symbol

Similar questions