Please try to prove it...............
Attachments:
Answers
Answered by
2
cosθ = 1 - cos²θ
⇒ cosθ = sin²θ
given: sin¹²θ + 3sin¹⁰θ + 3sin⁸θ + sin⁶θ + 2sin⁴θ - 2cos²θ
but cosθ = sin²θ
⇒ cos⁶θ + 3cos⁵θ + 3cos⁴θ + cos³θ + 2cos²θ - 2cos²θ
⇒ the above expression reduces to :
cos⁶θ + 3cos⁵θ + 3cos⁴θ + cos³θ
taking cos³θ common from the above expression
we get cos³θ (cos³θ + 3cos²θ + 3cosθ + 1)
we know that (a + b)³ = a³ + 3ab² + 3a²b + b³
⇒ cos³θ + 3cos²θ + 3cosθ + 1 = (cosθ + 1)³
⇒ the above expression is cos³θ(cosθ + 1)³
⇒ cos³θ(cosθ + 1)³ = {cosθ(cosθ +1)}³
⇒ (cos²θ + cosθ)³
⇒but given cos²θ + cosθ = 1
⇒ (cos²θ + cosθ)³ = 1³ = 1
kaustavgogoi:
Excellent thinking ability
Similar questions